(22)如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過(guò)焦點(diǎn)F的直線FA.交拋物線于另一點(diǎn)Bn(sn,tn).

(Ⅰ)試證:xnsn=-4(n≥1);

(Ⅱ)取xn=2n,并記Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).試證:

|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1(n≥1).

證明:(Ⅰ)對(duì)任意固定的n≥1,因?yàn)榻裹c(diǎn)F(0,1),所以可設(shè)直線AnBn的方程為y-1=knx,將它與拋物線x2=4y聯(lián)立得

x2-4knx-4=0.

由一元二次方程根與系數(shù)的關(guān)系得xnsn=-4.

   (Ⅱ)對(duì)任意固定的n≥1,利用導(dǎo)數(shù)知識(shí)易得拋物線x2=4y在An處的切線的斜率=

故x2=4y在An處切線方程為

y-yn=(x-xn),       ①

類似地,可求得x2=4y在Bn處的切線方程為

y-tn=(x-sn).   ②

由②減去①得

yn-tn=-

從而         

     ③

將③代入①并注意xnsn=-4得交點(diǎn)Cn的坐標(biāo)為(,-1).

由兩點(diǎn)間的距離公式得

|FCn|2=

                =

從而          |FCn|-

現(xiàn)在xn=2n.利用上述已證結(jié)論并由等比數(shù)列求和公式得,

|FC1|+|FC2|+…+|FCn|


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
1
2
)x
的圖象上,且數(shù)列{an} 是a1=1,公差為d的等差數(shù)列.
(1)證明:數(shù)列{bn} 是公比為(
1
2
)d
的等比數(shù)列;
(2)若公差d=1,以點(diǎn)Pn的橫、縱坐標(biāo)為邊長(zhǎng)的矩形面積為cn,求最小的實(shí)數(shù)t,若使cn≤t(t∈R,t≠0)對(duì)一切正整數(shù)n恒成立;
(3)對(duì)(2)中的數(shù)列{an},對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入2k-1個(gè)3(如在a1與a2之間插入20個(gè)3,a2與a3之間插入21個(gè)3,a3與a4之間插入22個(gè)3,…,依此類推),得到一個(gè)新的數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試求S1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11、某校為了了解學(xué)生的身體素質(zhì)情況,對(duì)初三(2)班的50名學(xué)生進(jìn)行了立定跳遠(yuǎn)、鉛球、100米三個(gè)項(xiàng)目的測(cè)試,每個(gè)項(xiàng)目滿分為10分.如圖,是將該學(xué)生所得的三項(xiàng)成績(jī)(成績(jī)均為整數(shù))之和進(jìn)行整理后,分成5組畫出的頻率分布直方圖,已知從左至右前4個(gè)小組的頻率分別為0.02,0.1,0.12,0.46.
下列說(shuō)法:
(1)學(xué)生的成績(jī)≥27分的共有15人;
(2)學(xué)生成績(jī)的眾數(shù)在第四小組(22.5~26.5)內(nèi);
(3)學(xué)生成績(jī)的中位數(shù)在第四小組(22.5~26.5)范圍內(nèi).
其中正確的說(shuō)法有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省揭陽(yáng)市高三3月第一次高考模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

一般來(lái)說(shuō),一個(gè)人腳掌越長(zhǎng),他的身高就越高,現(xiàn)對(duì)10名成年人的腳掌長(zhǎng)與身高進(jìn)行測(cè)量,得到數(shù)據(jù)(單位均為)如表,作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近,經(jīng)計(jì)算得到一些數(shù)據(jù):,;某刑偵人員在某案發(fā)現(xiàn)場(chǎng)發(fā)現(xiàn)一對(duì)裸腳印,量得每個(gè)腳印長(zhǎng)為,則估計(jì)案發(fā)嫌疑人的身高為

    

腳長(zhǎng)

20

21

22

23

24

25

26

27

28

29

身高

141

146

154

160

169

176

181

188

197

203

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市八校區(qū)重點(diǎn)(新八校)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)的圖象上,且數(shù)列{an} 是a1=1,公差為d的等差數(shù)列.
(1)證明:數(shù)列{bn} 是公比為的等比數(shù)列;
(2)若公差d=1,以點(diǎn)Pn的橫、縱坐標(biāo)為邊長(zhǎng)的矩形面積為cn,求最小的實(shí)數(shù)t,若使cn≤t(t∈R,t≠0)對(duì)一切正整數(shù)n恒成立;
(3)對(duì)(2)中的數(shù)列{an},對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入2k-1個(gè)3(如在a1與a2之間插入2個(gè)3,a2與a3之間插入21個(gè)3,a3與a4之間插入22個(gè)3,…,依此類推),得到一個(gè)新的數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試求S1000

查看答案和解析>>

同步練習(xí)冊(cè)答案