(08年湖北卷文)(本小題滿分12分)

已知函數(shù)為常數(shù),且)有極大值9。

(1)       求的值;

(2)       若斜率為-5的直線是曲線的切線,求此直線方程。

解:(Ⅰ) f’(x)=3x2+2mxm2=(x+m)(3xm)=0,則x=-mx=m,

    當(dāng)x變化時(shí),f’(x)與f(x)的變化情況如下表:

x

(-∞,-m)

m

(-m,)

(,+∞)

f’(x)

+

0

0

+

f (x)

 

極大值

 

極小值

 

從而可知,當(dāng)x=-m時(shí),函數(shù)f(x)取得極大值9,

f(-m)=-m3+m3+m3+1=9,∴m=2.

(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,

依題意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.

f(1)=6,f()=,

所以切線方程為y-6=-5(x+1),或y=-5(x),

即5xy-1=0,或135x+27y-23=0.

【試題解析】本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的性質(zhì)的方法和運(yùn)算能力。

【高考考點(diǎn)】函數(shù)的性質(zhì)與切線方程的求法。

【易錯(cuò)提醒】忽略“為常數(shù),且

【備考提示】函數(shù)的本質(zhì)在于把握函數(shù)的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年湖北卷文)(本小題滿分13分)

   已知雙同線的兩個(gè)焦點(diǎn)為

   的曲線C上.

  (Ⅰ)求雙曲線C的方程;

  (Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年湖北卷文)(本不題滿分12分)

    如圖,要設(shè)計(jì)一張矩形廣告,該廣告含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年湖北卷文)(本小題滿分12分)

   如圖,在直三棱柱中,平面側(cè)面

  (Ⅰ)求證:

  (Ⅱ)若,直線AC與平面所成的角為,二面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f

(08年湖北卷文)(本小題滿分12分)

   如圖,在直三棱柱中,平面側(cè)面

  (Ⅰ)求證:

  (Ⅱ)若,直線AC與平面所成的角為,二面角

查看答案和解析>>

同步練習(xí)冊(cè)答案