【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】試題分析:(1) 當(dāng)時(shí),,求導(dǎo),由求出切線斜率及點(diǎn),即可求出切線方程;(2)由在定義域區(qū)間上恒成立得,利用基本不等式求出函數(shù)的最大值,即可求出的取值范圍;(3)構(gòu)造函數(shù),由在區(qū)間上,函數(shù)至少存在一點(diǎn)使,即由在區(qū)間上,求出的范圍即可.
試題解析:已知函數(shù).
(1),,
,, 故切線方程為:.
(2),由在定義域內(nèi)為增函數(shù),所以在上恒成立,∴即,對(duì)恒成立,設(shè),,
易知,在上單調(diào)遞增,在上單調(diào)遞減,則,
∴,即.
(3)設(shè)函數(shù),,
則原問題在上至少存在一點(diǎn),使得
,
當(dāng)時(shí),,則在上單調(diào)遞增,,舍;
當(dāng)時(shí),,
∵,∴,,,則,舍;當(dāng)時(shí),,
則在上單調(diào)遞增,,整理得,
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】移動(dòng)支付極大地方便了我們的生活,也為整個(gè)杜會(huì)節(jié)約了大量的資源與時(shí)間成本.2018年國家高速公路網(wǎng)力推移動(dòng)支付車輛高速通行費(fèi).推廣移動(dòng)支付之前,只有兩種支付方式:現(xiàn)金支付或支付,其中使用現(xiàn)金支付車輛比例的為,使用支付車輛比例約為,推廣移動(dòng)支付之后,越來越多的車主選擇非現(xiàn)金支付,如表是推廣移動(dòng)支付后,隨機(jī)抽取的某時(shí)間段內(nèi)所有經(jīng)由某高速公路收費(fèi)站駛出高速的車輛的通行費(fèi)支付方式分布及其他相關(guān)數(shù)據(jù):
支付方式 | 是否需要在入口處取卡 | 是否需要停車支付 | 數(shù)量統(tǒng)計(jì)(輛) | 平均每輛車行駛出耗時(shí)(秒) |
現(xiàn)金支付 | 是 | 是 | 135 | 30 |
掃碼支付 | 是 | 是 | 240 | 15 |
支付 | 否 | 否 | 750 | 4 |
車輛識(shí)別支付 | 否 | 否 | 375 | 4 |
并以此作為樣本來估計(jì)所有在此高速路上行駛的車輛行費(fèi)支付方式的分布.
已知需要取卡的車輛進(jìn)入高速平均每車耗時(shí)為10秒,不需要取卡的車輛進(jìn)入高速平均每車耗時(shí)為4秒.
(Ⅰ)若此高速公路的日均車流量為9080輛,估計(jì)推廣移動(dòng)支付后比推廣移動(dòng)支付前日均可少發(fā)卡多少張?
(Ⅱ)在此高速公路上,推廣移動(dòng)支付后平均每輛車進(jìn)出高速收費(fèi)站總耗時(shí)能否比推廣移動(dòng)支付前大約減少一半?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪的半徑為40m,其中心點(diǎn)距離地面的高度為50m,摩天輪按逆時(shí)針方向做勻速轉(zhuǎn)動(dòng),且20min轉(zhuǎn)一圈,若摩天輪上點(diǎn)的起始位置在最高點(diǎn)處,則摩天輪轉(zhuǎn)動(dòng)過程中( )
A.經(jīng)過10min點(diǎn)距離地面10m
B.若摩天輪轉(zhuǎn)速減半,則其周期變?yōu)樵瓉淼?/span>倍
C.第17min和第43min時(shí)點(diǎn)距離地面的高度相同
D.摩天輪轉(zhuǎn)動(dòng)一圈,點(diǎn)距離地面的高度不低于70m的時(shí)間為min
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是
A. 相關(guān)關(guān)系是一種非確定性關(guān)系
B. 線性回歸方程對(duì)應(yīng)的直線,至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)
C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 在回歸分析中,為的模型比為的模型擬合的效果好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某超市,隨機(jī)調(diào)查了100名顧客購物時(shí)使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知其中從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有的把握認(rèn)為“超市購物用手機(jī)支付與年齡有關(guān)”?
(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”中抽取得到一個(gè)容量為5的樣本,設(shè)事件為“從這個(gè)樣本中任選3人,這3人中至少有2人是使用手機(jī)支付的”,求事件發(fā)生的概率?
列聯(lián)表
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 28 | ||
合計(jì) | 100 |
0.001 | |||||
10.828 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識(shí)競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(I)在答題卡上填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | |||
不獲獎(jiǎng) | |||
合計(jì) |
(II)將上述調(diào)査所得的頻率視為概率,現(xiàn)從該校參與競賽的學(xué)生中,任意抽取名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,人們對(duì)食品安全越來越重視,有機(jī)蔬菜的需求也越來越大,國家也制定出臺(tái)了一系列支持有機(jī)肥產(chǎn)業(yè)發(fā)展的優(yōu)惠政策,鼓勵(lì)和引導(dǎo)農(nóng)民增施有機(jī)肥,“藏糧于地,藏糧于技”.根據(jù)某種植基地對(duì)某種有機(jī)蔬菜產(chǎn)量與有機(jī)肥用量的統(tǒng)計(jì),每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用有機(jī)肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)如下表:
使用有機(jī)肥料(千克) | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
產(chǎn)量增加量 (百斤) | 2.1 | 2.9 | 3.5 | 4.2 | 4.8 | 5.6 | 6.2 | 6.7 |
(1)根據(jù)表中的數(shù)據(jù),試建立關(guān)于的線性回歸方程(精確到);
(2) 若種植基地每天早上7點(diǎn)將采摘的某有機(jī)蔬菜以每千克10元的價(jià)格銷售到某超市,超市以每千克15元的價(jià)格賣給顧客.已知該超市每天8點(diǎn)開始營業(yè),22點(diǎn)結(jié)束營業(yè),超市規(guī)定:如果當(dāng)天16點(diǎn)前該有機(jī)蔬菜沒賣完,則以每千克5元的促銷價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天都能全部賣完).該超市統(tǒng)計(jì)了100天該有機(jī)蔬菜在每天的16點(diǎn)前的銷售量(單位:千克),如表:
每天16點(diǎn)前的 銷售量(單位:千克) | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
頻數(shù) | 10 | 20 | 16 | 16 | 14 | 14 | 10 |
若以100天記錄的頻率作為每天16點(diǎn)前銷售量發(fā)生的概率,以該超市當(dāng)天銷售該有機(jī)蔬菜利潤的期望值為決策依據(jù),說明該超市選擇購進(jìn)該有機(jī)蔬菜110千克還是120千克,能使獲得的利潤更大?
附:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為: ,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在本校任選了一個(gè)班級(jí),對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表,已知在這50人中隨機(jī)抽取2人,這2人都“認(rèn)為作業(yè)量大”的概率為.
認(rèn)為作業(yè)量大 | 認(rèn)為作業(yè)量不大 | 合計(jì) | |
男生 | 18 | ||
女生 | 17 | ||
合計(jì) | 50 |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“認(rèn)為作業(yè)量大”與“性別”有關(guān)?
附表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
附:(其中)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com