【題目】已知x,y,z均為正數(shù).
(1)若xy<1,證明:|x+z||y+z|>4xyz;
(2)若=,求2xy2yz2xz的最小值.
【答案】(1)證明見(jiàn)解析;(2)最小值為8
【解析】
(1)利用基本不等式可得 , 再根據(jù)0<xy<1時(shí), 即可證明|x+z||y+z|>4xyz.
(2)由=, 得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy2yz2xz的最小值.
(1)證明:∵x,y,z均為正數(shù),
∴|x+z||y+z|=(x+z)(y+z)≥=,
當(dāng)且僅當(dāng)x=y=z時(shí)取等號(hào).
又∵0<xy<1,∴,
∴|x+z||y+z|>4xyz;
(2)∵=,即.
∵,
,
,
當(dāng)且僅當(dāng)x=y=z=1時(shí)取等號(hào),
∴,
∴xy+yz+xz≥3,∴2xy2yz2xz=2xy+yz+xz≥8,
∴2xy2yz2xz的最小值為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,四邊形ACFE為平行四邊形,設(shè)BD與AC相交于點(diǎn)G,AB=BD=AE=2,∠EAD=∠EAB.
(1)證明:平面ACFE⊥平面ABCD;
(2)若直線AE與BC的夾角為60°,求直線EF與平面BED所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了慶祝中華人民共和國(guó)成立70周年,某公司舉行大型抽獎(jiǎng)活動(dòng),活動(dòng)中準(zhǔn)備了一枚質(zhì)地均勻的正十二面體的骰子,在其十二個(gè)面上分別標(biāo)有數(shù)字1,2,3,…,12,每位員工均有一次參與機(jī)會(huì),并規(guī)定:若第一次拋得向上面的點(diǎn)數(shù)為完全平方數(shù)(即能寫(xiě)成整數(shù)的平方形式,如),則立即視為獲得大獎(jiǎng);若第一次拋得向上面的點(diǎn)數(shù)不是完全平方數(shù),則需進(jìn)行第二次拋擲,兩次拋得的點(diǎn)數(shù)和為完全平方數(shù)(如),也可視為獲得大獎(jiǎng).否則,只能獲得安慰獎(jiǎng).
(1)試列舉須拋擲兩次才能獲得大獎(jiǎng)的所有可能情況(用表示前后兩次拋得的點(diǎn)數(shù)),并說(shuō)明所有可能情況的總數(shù);
(2)若獲得大獎(jiǎng)的獎(jiǎng)金(單位:元)為拋得的點(diǎn)數(shù)或點(diǎn)數(shù)和(完全平方數(shù))的360倍,而安慰獎(jiǎng)的獎(jiǎng)金為48元,該公司某位員工獲得的獎(jiǎng)金為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AC=BC,AB=2BC,D為線段AB上一點(diǎn),且AD=3DB,PD⊥平面ABC,PA與平面ABC所成的角為45°.
(1)求證:平面PAB⊥平面PCD;
(2)求二面角P﹣AC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我們的教材必修一中有這樣一個(gè)問(wèn)題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:
方案一:每天回報(bào)元;
方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)元;
方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.
記三種方案第天的回報(bào)分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類(lèi)型,并據(jù)此寫(xiě)出三個(gè)數(shù)列的通項(xiàng)公式;
(2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有下列四個(gè)結(jié)論,其中所有正確結(jié)論的編號(hào)是___________.
①若,則的最大值為;
②若,,是等差數(shù)列的前項(xiàng),則;
③“”的一個(gè)必要不充分條件是“”;
④“,”的否定為“,”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求不等式的解集;
(2)若,且對(duì)任意,恒成立,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com