在△ABC中,AB=3,BC=5,AC=7,則△ABC的形狀是( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、非鈍角三角形
考點(diǎn):三角形的形狀判斷,余弦定理
專題:解三角形
分析:由三角形的三邊判斷出b為最大邊,根據(jù)大邊對(duì)大角可得B為最大角,利用余弦定理表示出cosB,將已知的三邊長代入求出cosB的值,由cosB的值小于0及B為三角形的內(nèi)角,可得B為鈍角,即三角形為鈍角三角形.
解答: 解:∵AB=c=3,BC=a=5,AC=b=7,
∴B為最大角,
∴由余弦定理得:cosB=
a2+c2-b2
2ac
=
9+25-49
30
=-
1
2
<0,
又B為三角形的內(nèi)角,
∴B為鈍角,
則△ABC的形狀是鈍角三角形.
故選:C
點(diǎn)評(píng):此題考查了三角形形狀的判斷,涉及的知識(shí)有:余弦定理,三角形的邊角關(guān)系,以及余弦函數(shù)的圖象與性質(zhì),熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
),曲線C的參數(shù)方程為
x=1+cosα
y=sinα
(α為參數(shù)).則點(diǎn)M到曲線C上的點(diǎn)的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.給出如下四個(gè)結(jié)論:
①2011∈[1];
②-3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整數(shù)a,b屬于同一“類”的充要條件是“a-b∈[0]”.
其中,正確結(jié)論的是(  )
A、①②④B、①②③
C、①③④D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=(a2-2)+(a+
2
)i為純虛數(shù),則
a+i2013
2
-i
的虛部為( 。
A、2
2
B、2
2
i
C、
2
2
3
D、
2
2
3
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-cosx,若x1,x2∈[-
π
2
,
π
2
],且f(x1)>f(x2),則必有( 。
A、x1>x2
B、x1>|x2|
C、x1<x2
D、|x1|>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位為鼓勵(lì)職工節(jié)約用水,作出了如下規(guī)定:每月用水不超過10m3,按每立方米x元收取水費(fèi);每月用水超過10m3,超過部分加倍收費(fèi),某職工某月繳費(fèi)16x元,則該職工這個(gè)月實(shí)際用水為( 。
A、13m3
B、14m3
C、18m3
D、26m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:函數(shù)f(x)=(m-3)x3在R上是減函數(shù),q:0<m<3,則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,則“a>b”是“3a>2b”( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y1=40.9,y2=80.48,y3=(
1
2
-1.5,則(  )
A、y3>y1>y2
B、y2>y1>y3
C、y1>y2>y3
D、y1>y3>y2

查看答案和解析>>

同步練習(xí)冊(cè)答案