求解不等式組
x2-x-5<0
3x2-3x-3<0
考點:其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:分別求解兩個不等式,然后求解交集即可.
解答: 解:x2-x-5<0,可得
1-
21
2
<x<
1+
21
2

3x2-3x-3<0可得:
1-
5
2
<x<
1+
5
2
,
綜上
1-
5
2
<x<
1+
5
2
,
∴不等式組
x2-x-5<0
3x2-3x-3<0
的解集為:{x|
1-
5
2
<x<
1+
5
2
}.
點評:本題考查不等式組的解集,二次不等式的解法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
1+2i2015
1-i2015
的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c(b≥2,c∈R),若f(x)的定義域為[-1,0],值域也為[-1,0].若數(shù)列{bn}滿足bn=
f(n)
n3
(n∈N*)
,記數(shù)列{bn}的前n項和為Tn,問是否存在正常數(shù)A,使得對于任意正整數(shù)n都有Tn<A?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式(a-4)x2+10x+a-4<0對任意實數(shù)x都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在多面體ABCDEF中,四邊形ABCD是矩形,在四邊形ABFE中,AB∥EF,∠EAB=90°,AB=4,AD=AE=EF=2,平面ABFE⊥平面ABCD.
(1)求證:AF⊥平面BCF
(2)求二面角B-FC-D的大小
(3)求點D到平面BCF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-3x+3)ex,x∈[-2,t](t>-2)
(1)當(dāng)t<1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè)g(x)=f(x)+(x-2)ex,試問函數(shù)g(x)在(1,+∞)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-a)2+y2=r2與直線y=x-1交于A、B點,點P為線段AB中點,O為坐標(biāo)原點.
(1)如果直線OP的斜率為
1
3
,求實數(shù)a的值;
(2)如果|AB|=
20
,且OA⊥OB,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差為d的等差數(shù)列{an}和公比q<0的等比數(shù)列{bn},a1=b1=1,a2+b2=1,a3+b3=4.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令Cn=2 an+anbn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan20°
4
+sin20°=
 

查看答案和解析>>

同步練習(xí)冊答案