若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x)且x∈(-1,1]時f(x)=1-x2,函數(shù)g(x)=
lg|x|(x≠0)
1(x=0)
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,10]內零點的個數(shù)為(  )
A.12B.14C.13D.8
∵f(x+2)=f(x),
∴f(x)為一個T=2的周期函數(shù)
又∵x∈(-1,1]時f(x)=1-x2,
我們可以做出函數(shù)y=f(x)的圖象與函數(shù)g(x)=
lg|x|(x≠0)
1(x=0)
的圖象如下圖所示:

由圖象可得函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在區(qū)間[-5,10]內共有14個交點,
即函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,10]內共有14個零點
故選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

求證:
(I);
(Ⅱ)函數(shù)在區(qū)間(0,2)內至少有一個零點;
(III)設是函數(shù)的兩個零點,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知定義在R上的函數(shù)f(x)滿足:f(x)=
x2+2,x∈[0,1]
2-x2,x∈[-1,0)
,且f(x+2)=f(x),g(x)=
2x+5
x+2
,則方程f(x)=g(x)在區(qū)間[-8,3]上的所有實根之和為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=
|lgx|0<x≤10
-
1
5
x+3x>10
,若a、b、c均不相等且f(a)=f(b)=f(c),則abc的取值范圍為( 。
A.(1,10)B.(5,6)C.(10,15)D.(20,24)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=|x|-1,關于x的方程f2(x)-|f(x)|+k=0,給出下列四個命題:
①存在實數(shù)k,使得方程恰有2個不同的實根;
②存在實數(shù)k,使得方程恰有4個不同的實根;
③存在實數(shù)k,使得方程恰有5個不同的實根;
④存在實數(shù)k,使得方程恰有8個不同的實根.
其中真命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=x-[x],其中[x]表示不超過實數(shù)x的最大整數(shù).若關于x的方程f(x)=kx+k有三個不同的實根,則實數(shù)k的取值范圍是( 。
A.[-1,-
1
2
)∪(
1
4
,
1
3
]
B.(-1,-
1
2
]∪[
1
4
1
3
)
C.[-
1
3
,-
1
4
)∪(
1
2
,1]
D.(-
1
3
,-
1
4
]∪[
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設方程2-x=|lgx|的兩個根為x1,x2,則(  )
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知f(x)=
|lgx|,x>0
2|x|,x≤0
,則函數(shù)y=2f2(x)-3f(x)+1的零點的個數(shù)為______個.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設x0是函數(shù)f(x)=x2+log2x的零點,若有0<a<x0,則f(a)的值滿足(  )
A.f(a)=0B.f(a)>0
C.f(a)<0D.f(a)的符號不確定

查看答案和解析>>

同步練習冊答案