某商品每件成本9元,售價為30元,每星期賣出144件. 如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值(單位:元,)的平方成正比.
已知商品單價降低2元時,一星期多賣出8件.
(1)將一個星期的商品銷售利潤表示成的函數(shù);
(2)如何定價才能使一個星期的商品銷售利潤最大?
(1)(2)見解析
解析試題分析:(1)先設(shè)商品降價x元,寫出多賣的商品數(shù),則可計算出商品在一個星期的獲利數(shù),再依題意:“商品單價降低2元時,一星期多賣出24件”求出比例系數(shù)即可得一個星期的商品銷售利潤表示成x的函數(shù);
(2)根據(jù)(1)中得到的函數(shù),利用導(dǎo)數(shù)研究其極值,從而救是f(x)達到極大值.從而得出所以定價為多少元時,能使一個星期的商品銷售利潤最大.
試題解析:解:(1)設(shè)商品降價元,則每個星期多賣的商品數(shù)為,若記商品在一個星期的獲利為,則依題意有, 3分
又由已知條件,,于是有, 5分
所以 6分
(2)由(1)得 7分
當變化時,與的變化如下表:
10分2 12 ↘ 極小 ↗ 極大 ↘
故時,達到極大值.因為,,
所以定價為元能使一個星期的商品銷售利潤最大. 13分
考點:函數(shù)模型的選擇與應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2-2ax+2+b(a≠0),若f(x)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-mx在[2,4]上單調(diào),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計),切點為M,并把該地塊分為兩部分.現(xiàn)以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數(shù))的圖象,且點M到邊OA距離為.
(1)當時,求直路所在的直線方程;
(2)當t為何值時,地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù).
(1)當時,求函數(shù)的表達式;
(2)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了保護環(huán)境,某工廠在國家的號召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測算,處理成本(萬元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價值為萬元的某種產(chǎn)品,同時獲得國家補貼萬元.
(1)當時,判斷該項舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請求出國家最少補貼多少萬元,該工廠才不會虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,為了制作一個圓柱形燈籠,先要制作4個全等的矩形骨架,總計耗用9.6米鐵絲,再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).當圓柱底面半徑r取何值時,S取得最大值?并求出該最大值(結(jié)果精確到0.01平方米).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我國遼東半島普蘭附近的泥炭層中,發(fā)掘出的古蓮子,至今大部分還能發(fā)芽開花,這些古蓮子是多少年以前的遺物呢?要測定古物的年代,可用放射性碳法.在動植物的體內(nèi)都含有微量的放射性14C,動植物死亡后,停止了新陳代謝,14C不再產(chǎn)生,且原有的14C會自動衰變,經(jīng)過5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經(jīng)過科學(xué)家測定知道,若14C的原始含量為a,則經(jīng)過t年后的殘余量a′(與a之間滿足a′=a·e-kt).現(xiàn)測得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單
位:千克)與銷售價格x(單位:元/千克)滿足關(guān)系式y=+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
①求a的值;
②若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com