在長(zhǎng)方體ABCD-A1B1C1D1中,棱錐A1-ABCD的體積與長(zhǎng)方體體積之比為
 
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:計(jì)算題
分析:由棱錐A1--ABCD的體積V A1--ABCD=
1
3
SABCD×AA1,長(zhǎng)方體ABCD-A1B1C1D1的體積VABCD-A1B1C1D1=SABCD×AA1,能求出棱錐A1--ABCD的體積與長(zhǎng)方體的體積之比.
解答: 解:由棱錐A1--ABCD的體積V A1--ABCD=
1
3
SABCD×AA1,
長(zhǎng)方體ABCD-A1B1C1D1的體積VABCD-A1B1C1D1=SABCD×AA1,
∴棱錐A1-ABCD的體積與長(zhǎng)方體的體積之比1:3.
故答案為:1:3
點(diǎn)評(píng):本題考查棱柱和棱錐的體積的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
a-1
x
-lnx.
(1)當(dāng)a≤
1
2
時(shí),試討論函數(shù)f(x)的單調(diào)性;
(2)證明:對(duì)任意的n∈N+,有
ln1
1
+
ln2
2
+…+
ln(n-1)
n-1
+
lnn
n
n2
2(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1.
(Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a=
1
3
時(shí),設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對(duì)于?x1∈[1,2],?x2∈[0,1],使f(x1)=g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
a+i
2i
的實(shí)部與虛部相等,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
AB
|=6,|
CD
|=9,求|
AB
-
CD
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga(1-
a
x
),其中0<a<1.
(Ⅰ)證明:f(x)是(a,+∞)上的減函數(shù);
(Ⅱ)若f(x)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直角坐標(biāo)平面內(nèi)兩點(diǎn)P,Q滿足條件:①都P,Q在函數(shù)y=f(x)的圖象上;②P,Q關(guān)于原點(diǎn)對(duì)稱,則稱(P,Q)是函數(shù)y=f(x)的一個(gè)“伙伴點(diǎn)組”(點(diǎn)組(P,Q)與(Q,P)看作同一個(gè)“伙伴點(diǎn)組”).已知函數(shù)f(x)=
k(x+1),  x<0
x2+1,  x≥0
有兩個(gè)“伙伴點(diǎn)組”,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=logax,(a>0且a≠1)滿足f(9)=2,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log2
x2
x-1
)的值域?yàn)?div id="hz7bfdz" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案