【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量 = , = ,若k +3 平行,求實(shí)數(shù)k的值.

【答案】
(1)解:設(shè)D(x,y).∵ ,

∴(2,﹣2)﹣(1,3)=(x,y)﹣(4,1),

化為(1,﹣5)=(x﹣4,y﹣1),

,解得

∴D(5,﹣4)


(2)解:∵ =(1,﹣5), = =(4,1)﹣(2,﹣2)=(2,3).

=k(1,﹣5)﹣(2,3)=(k﹣2,﹣5k﹣3), =(1,﹣5)+3(2,3)=(7,4).

∵k +3 平行,

∴7(﹣5k﹣3)﹣4(k﹣2)=0,解得k=


【解析】(1)利用向量相等即可得出;(2)利用向量共線定理即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線與橢圓交于 兩點(diǎn),直線, 分別與軸交于點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},滿足a1=1, ,n∈N* . (Ⅰ)求證:數(shù)列 為等差數(shù)列;
(Ⅱ)設(shè) ,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中, , 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sin ,sin ), =(cos ,cos ),且向量 與向量 共線.
(1)求證:sin( )=0;
(2)若記函數(shù)f(x)=sin( ),求函數(shù)f(x)的對(duì)稱軸方程;
(3)求f(1)+f(2)+f(3)+…+f(2013)的值;
(4)如果已知角0<A<B<π,且A+B+C=π,滿足f( )=f( )= ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形ABC中,∠A=150°,AB=AC=1,則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求上的最小值;

2)若關(guān)于的不等式只有兩個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將編號(hào)為1、2、3、4的四個(gè)小球隨機(jī)的放入編號(hào)為1、2、3、4的四個(gè)紙箱中,每個(gè)紙箱有且只有一個(gè)小球,稱此為一輪“放球”.設(shè)一輪“放球”后編號(hào)為的紙箱放入的小球編號(hào)為,定義吻合度誤差為

(1) 寫出吻合度誤差的可能值集合;

(2) 假設(shè)等可能地為1,2,3,4的各種排列,求吻合度誤差的分布列;

(3)某人連續(xù)進(jìn)行了四輪“放球”,若都滿足,試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪“放球”相互獨(dú)立);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機(jī)使用的不斷普及,現(xiàn)在全國(guó)各地的中小學(xué)生攜帶手機(jī)進(jìn)入校園已經(jīng)成為了普遍的現(xiàn)象,也引起了一系列的問題。然而,是堵還是疏,就擺在了我們學(xué)校老師的面前.某研究型學(xué)習(xí)小組調(diào)查研究中學(xué)生使用手機(jī)對(duì)學(xué)習(xí)的影響”部分統(tǒng)計(jì)數(shù)據(jù)如下表

不使用手機(jī)

使用手機(jī)

合計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀人數(shù)

18

7

25

學(xué)習(xí)成績(jī)不優(yōu)秀人數(shù)

6

19

25

合計(jì)

24

26

50

參考數(shù)據(jù),其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(1)試根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生使用手機(jī)對(duì)學(xué)習(xí)有影響?

(2)研究小組將該樣本中使用手機(jī)且成績(jī)優(yōu)秀的7位同學(xué)記為組,不使用手機(jī)且成績(jī)優(yōu)秀的18位同學(xué)記為組,計(jì)劃從組推選的2人和組推選的3人中,隨機(jī)挑選兩人來分享學(xué)習(xí)經(jīng)驗(yàn).求挑選的兩人一人來自組、另一人來自組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案