解答:(Ⅰ)解:對(duì)于函數(shù)y=x
2,分別取x=1,2,4,對(duì)應(yīng)的函數(shù)值為1,4,16,構(gòu)成等比數(shù)列,符合等比源函數(shù)定義,∴函數(shù)y=x
2是等比源函數(shù);
對(duì)于函數(shù)
y=,分別取x=1,2,4,對(duì)應(yīng)的函數(shù)值為1,
,,構(gòu)成等比數(shù)列,符合等比源函數(shù)定義,∴函數(shù)
y=是等比源函數(shù);
對(duì)于函數(shù)y=log
2x,分別取x=2,4,16,對(duì)應(yīng)的函數(shù)值為1,2,4,構(gòu)成等比數(shù)列,符合等比源函數(shù)定義,∴函數(shù)y=log
2x是等比源函數(shù).
∴①②③都是等比源函數(shù);
(Ⅱ)解:函數(shù)f(x)=2
x+1不是等比源函數(shù).
證明如下:
假設(shè)存在正整數(shù)m,n,k且m<n<k,使得f(m),f(n),f(k)成等比數(shù)列,則
(2
n+1)
2=(2
m+1)(2
k+1),整理得2
2n+2
n+1=2
m+k+2
m+2
k,
等式兩邊同除以2
m,得2
2n-m+2
n-m+1=2
k+2
k-m+1.
∵n-m≥1,k-m≥2,∴等式左邊為偶數(shù),等式右邊為奇數(shù),
∴等式2
2n-m+2
n-m+1=2
k+2
k-m+1不可能成立,
∴假設(shè)不成立,說明函數(shù)f(x)=2
x+1不是等比源函數(shù);
(Ⅲ)證明:∵?b,n∈N
*,都有g(shù)(n+1)-g(n)=d,
∴?d,b∈N
*,數(shù)列{g(n)}都是以g(1)為首項(xiàng),公差為d的等差數(shù)列.
?d,b∈N
*,g(1),g(1)(1+d),g(1)(1+d)
2成等比數(shù)列,
∵g(1)(1+d)=g(1)+(g(1)+1-1)d=g[g(1)+1],
g(1)(1+d)
2=g(1)+(2g(1)+g(1)d+1-1)d=g[2g(1)+g(1)d+1],
∴g(1),g[g(1)+1],g[2g(1)+g(1)d+1]∈{g(n)|n∈N
*},
∴?d,b∈N
*,函數(shù)g(x)=dx+b都是等比源函數(shù).