【題目】下列說法不正確的是( )
A.若“p且q”為假,則p、q至少有一個是假命題
B.命題“?x0∈R,x02﹣x0﹣1<0”的否定是“?x∈R,x2﹣x﹣1≥0”
C.“φ= ”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D.a<0時,冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實數(shù)的最大值;
(Ⅲ)若關于的方程在區(qū)間內(nèi)有兩個實數(shù)根,分別求實數(shù)與的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是 的中點.(12分)
(Ⅰ)設P是 上的一點,且AP⊥BE,求∠CBP的大小;
(Ⅱ)當AB=3,AD=2時,求二面角E﹣AG﹣C的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示,在正方體中,設BC的中點為M,GH的中點為N
(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由);
(2)證明:直線MN∥平面BDH
(3)求異面直線MN與AG所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠有容量300噸的水塔一個,每天從早六點到晚十點供應生活和生產(chǎn)用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量W(噸)與時間t(單位:小時,規(guī)定早晨六點時t=0)的函數(shù)關系為W=100 ,水塔的進水量有10級,第一級每小時水10噸,以后每提高一級,進水量增加10噸.若某天水塔原有水100噸,在供應同時打開進水管.問該天進水量應選擇幾級,既能保證該廠用水(即水塔中水不空),又不會使水溢出?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有兩個分類變量x與y,其一組觀測值如下面的2×2列聯(lián)表所示:
y1 | y2 | |
x1 | a | 20-a |
x2 | 15-a | 30+a |
其中a,15-a均為大于5的整數(shù),則a取何值時,在犯錯誤的概率不超過0.1的前提下認為x與y之間有關系?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知斜率為的直線與橢圓C:交于A、B兩點,線段AB的中點為M(),(m)。
(1)證明:;
(2)設F為C的右焦點,P為C上一點,且++=,證明:2||=||+||.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,點F為拋物線C1:x2=2py(p>0)的焦點,且拋物線C1上點M處的切線與圓C2:x2+y2=1相切于點Q.
(Ⅰ)當直線MQ的方程為 時,求拋物線C1的方程;
(Ⅱ)當正數(shù)p變化時,記S1 , S2分別為△FMQ,△FOQ的面積,求 的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com