設(shè)分別是橢圓)的左、右焦點(diǎn),是其右準(zhǔn)線上縱坐標(biāo)為為半焦距)的點(diǎn),且,則橢圓的離心率是(   )
A.B.C.D.
D
求離心率就尋找a,c的關(guān)系,借助與|F1F2|=|F2P|,Rt△PMF2建立等量關(guān)系求出離心率.
解答:解:由

已知P(),
所以2c=化簡(jiǎn)得a2-2c2=0?e=
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率為,焦點(diǎn)是,則橢圓方程為      ( ■ )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的離心率    (     )
               B                 C               D 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且,若過,,三點(diǎn)的圓恰好與直線相切. 過定點(diǎn)的直線與橢圓交于,兩點(diǎn)(點(diǎn)在點(diǎn),之間).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線的斜率,在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形. 如果存在,求出的取值范圍,如果不存在,請(qǐng)說明理由;
(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分分)
(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).
(1)求橢圓的方程;
(2)若直線與橢圓交于、兩點(diǎn),,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線與橢圓相交于兩點(diǎn),弦的中點(diǎn)坐標(biāo)為,則直線的方程為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[理]如圖,已知?jiǎng)狱c(diǎn)分別在圖中拋物線及橢圓的實(shí)線上運(yùn)動(dòng),若軸,點(diǎn)的坐標(biāo)為,則的周長(zhǎng)的取值范圍是   ▲   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
知橢圓的離心率,過點(diǎn)的直線與原點(diǎn)的距離為.         
(1)求橢圓的方程;
(2)設(shè)為橢圓的左、右焦點(diǎn),過作直線交橢圓于、兩點(diǎn),求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知方向向量為
的右焦點(diǎn),且橢圓的離心率為.
求橢圓C的方程;
若已知點(diǎn)D(3,0),點(diǎn)M,N是橢圓C上不重合的兩點(diǎn),且,
求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案