【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

(Ⅰ)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人比例;

(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

(Ⅲ)根據(jù)(Ⅱ)中的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)老年人中需要志愿幫助?

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(Ⅰ) ;(Ⅱ)有99%的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān);(Ⅲ)答案見解析.

【解析】試題分析:()由列聯(lián)表可知調(diào)查的位老年人中有位需要志愿者提供幫助,兩個數(shù)據(jù)求比值得到該地區(qū)老年人中需要幫助的老年人的比例的估算值;)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機變量的觀測值公式,得到觀測值的結(jié)果,把觀測值的結(jié)果與臨界值進行比較,看出有多大把握說該地區(qū)的老年人是否需要幫助與性別有關(guān);)從樣本數(shù)據(jù)老年人中需要幫助的比例有明顯差異,調(diào)查時,可以先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.

試題解析:(Ⅰ)調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要幫助的老年人的比例的估算值為

。

由于9.967>6.635,

所以有99%的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān)。

(Ⅲ)由(II)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關(guān),并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時,先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知每一項都是正數(shù)的數(shù)列滿足,

(1)用數(shù)學(xué)歸納法證明: ;

(2)證明:

(3)記為數(shù)列的前項和,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為2,離心率.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點作圓的切線,切點分別為,直線軸交于點,過點作直線交橢圓兩點,點關(guān)于軸的對稱點為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5名男生4名女生站成一排,求滿足下列條件的排法:

(1)女生都不相鄰有多少種排法?

(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?

(3)男甲不在首位,男乙不在末位,有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行了以“重溫時代經(jīng)典,唱響回聲嘹亮”為主題的“紅歌”歌詠比賽. 該校高一年級有1,2,3,4四個班參加了比賽,其中有兩個班獲獎. 比賽結(jié)果揭曉之前,甲同學(xué)說:“兩個獲獎班級在2班、3班、4班中”,同學(xué)說2班沒有獲獎,3班獲獎了”,同學(xué)說1班、4班中有且只有一個班獲獎”,丁同學(xué)說:“乙說得對”. 已知這四人中有且只有兩人的說法是正確的,則這兩人是

A. 乙,丁 B. 甲,丙 C. 甲,丁 D. 乙,丙

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點與其短軸得一個端點是正三角形的三個頂點,點在橢圓上,直線與橢圓交于兩點,與軸, 軸分別相交于點合點,且,點時點關(guān)于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.

(1) 求橢圓的方程;

(2)是否存在直線,使得點平分線段?若存在,請求出直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,各棱長均相等, , 分別為棱, , 的中點.

(Ⅰ)證明: 平面

(Ⅱ)若三棱柱為直棱柱,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)前網(wǎng)購已成為現(xiàn)代大學(xué)生的時尚。某大學(xué)學(xué)生宿舍4人參加網(wǎng)購約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物

1求這4個人中恰有1人去淘寶網(wǎng)購物的概率;

2分別表示這4個人中去淘寶網(wǎng)和京東商城購物的人數(shù),求隨機變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

同步練習(xí)冊答案