設(shè)函數(shù)f(x)=
x2-6x+6, x≥0
   3x+4,  x<0
,若互不相等的實(shí)數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是( 。
分析:先作出函數(shù)f(x)=
x2-6x+6, x≥0
   3x+4,  x<0
的圖象,如圖,不妨設(shè)x1<x2<x3,則x2,x3關(guān)于直線x=3對稱,得到x2+x3=6,且-
7
3
<x1<0;最后結(jié)合求得x1+x2+x3的取值范圍即可.
解答:解:函數(shù)f(x)=
x2-6x+6, x≥0
   3x+4,  x<0
的圖象,如圖,

不妨設(shè)x1<x2<x3,則x2,x3關(guān)于直線x=3對稱,故x2+x3=6,
且x1滿足-
7
3
<x1<0;
則x1+x2+x3的取值范圍是:-
7
3
+6<x1+x2+x3<0+6;
即x1+x2+x3∈(
11
3
,6).
故選D
點(diǎn)評:本小題主要考查分段函數(shù)的解析式求法及其圖象的作法、函數(shù)的值域的應(yīng)用、函數(shù)與方程的綜合運(yùn)用等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
(2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊答案