已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813086389.png)
為等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813101491.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813117297.png)
項和,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813117804.png)
.
(Ⅰ)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813101491.png)
的通項公式;
(Ⅱ)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813148562.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813117297.png)
項和公式.
試題分析:(1)求等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813226481.png)
的通項公式,一般是將問題中涉及的等式用首項
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813242315.png)
和公差
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813257321.png)
的方程組表示出來并求解,然后利用等差數(shù)列的通項公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813273801.png)
即可求出等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813226481.png)
的通項公式;(2)在對數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813195554.png)
利用公式求前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813117297.png)
項和時,一般先利用定義法判斷它是等差數(shù)列還是等比數(shù)列,然后再借助相應(yīng)的公式即可求出數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813195554.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813117297.png)
項和.
試題解析:解(Ⅰ)設(shè)等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813351492.png)
的公差為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813367303.png)
,
因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813382814.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240208133981326.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813413566.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240208134291000.png)
7分
(Ⅱ)由(Ⅰ)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813445523.png)
,令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813445552.png)
則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813476486.png)
,
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240208134911157.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813507492.png)
是以4為首項,4為公比的等比數(shù)列,
設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813507492.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813538291.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813538355.png)
則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240208135542022.png)
13分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020813117297.png)
項和
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552124456.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552124371.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240205521391052.png)
.
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552124456.png)
的通項公式;
(2)若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552171471.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552186897.png)
,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552171471.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552217297.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552233373.png)
,若不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552249670.png)
對一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552264531.png)
恒成立,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020552280323.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023810942456.png)
滿足公比
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023810958512.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023810973555.png)
,且{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023810989345.png)
}中的任意兩項之積也是該數(shù)列中的一項,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023811004479.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023811020304.png)
的所有可能取值的集合為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
一個由正數(shù)組成的等比數(shù)列,它的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021104093248.png)
項和是前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021104109291.png)
項和的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021104124259.png)
倍,則此數(shù)列的公比為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106347457.png)
的公比為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106363310.png)
,其前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106378297.png)
項的積為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106394373.png)
,并且滿足條件
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106409169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106425404.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106441608.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106456694.png)
。給出下列結(jié)論:①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106472461.png)
;②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106472379.png)
的值是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106394373.png)
中最大的;③使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106503457.png)
成立的最大自然數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020106378297.png)
等于18。其中正確結(jié)論的序號是
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在正項等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015208146480.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015208162475.png)
為方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015208177642.png)
的兩根,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015208193544.png)
等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020934175456.png)
的首項為1,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020934190471.png)
為等比數(shù)列且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020934221615.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020934221544.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020934237388.png)
( )
查看答案和解析>>