【題目】已知,其對稱軸為,且.
(1)求的解析式;
(2)若對任意及任意,恒成立,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)由二次函數(shù)的對稱軸可得出的值,再由可求出實數(shù)的值,從而可得出函數(shù)的解析式;
(2)由題意知,對任意的及任意,不等式恒成立,可得出和均滿足不等式,由此可得出不等式組對任意的恒成立,利用參變量分離法得出,分別求出函數(shù)、在區(qū)間的最小值,可解出實數(shù)的取值范圍.
(1)二次函數(shù)的對稱軸為直線,得,
則,又,;
(2)由題意知,不等式對任意的及任意恒成立,構(gòu)造函數(shù),
由題意可得對任意的恒成立,
所以對任意的恒成立,
對于函數(shù),當(dāng)時,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立,所以在區(qū)間上的最小值為,,得;
由于函數(shù)在區(qū)間上單調(diào)遞增,則當(dāng)時,函數(shù)取得最小值,,解得.
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.
(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;
(2)若曲線, 相交于兩點, 的中點為,過點做曲線的垂線交曲線于兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足, .
(1)求的通項公式;
(2)各項均為正數(shù)的等比數(shù)列中, , ,求的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的方程是-y2=1.
(1)直線l的傾斜角為,被雙曲線截得的弦長為,求直線l的方程;
(2)過點P(3,1)作直線l′,使其被雙曲線截得的弦恰被P點平分,求直線l′的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .若曲線在點處的切線方程為(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在(0,+)上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列三個命題,其中所有錯誤命題的序號是______.
拋物線的準(zhǔn)線方程為;
過點作與拋物線只有一個公共點的直線t僅有1條;
是拋物線上一動點,以P為圓心作與拋物線準(zhǔn)線相切的圓,則這個圓一定經(jīng)過一個定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點中學(xué)將全部高一新生分成A,B兩個成績相當(dāng)(成績的均值、方差都相同)的級部,A級部采用傳統(tǒng)形式的教學(xué)方式,B級部采用新型的基于信息化的自主學(xué)習(xí)教學(xué)方式.期末考試后分別從兩個級部中各隨機抽取100名學(xué)生的數(shù)學(xué)成績進行統(tǒng)計,得到如下數(shù)據(jù):
A級部教學(xué) 成績分組 | ||||||
頻數(shù) | 18 | 23 | 29 | 23 | 6 | 1 |
B級部教學(xué) 成績分組 | ||||||
頻數(shù) | 8 | 16 | 24 | 28 | 21 | 3 |
若成績不低于130分者為“優(yōu)秀”.
根據(jù)上表數(shù)據(jù)分別估計A,B兩個級部“優(yōu)秀”的概率;
(2)填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為“優(yōu)秀”與教學(xué)方式有關(guān)?
是否優(yōu)秀 級部 | 優(yōu)秀 | 不優(yōu)秀 | 合計 |
A級部 | |||
B級部 | |||
合計 |
(3)根據(jù)上表數(shù)據(jù)完成下面的頻率分布直方圖,并根據(jù)頻率分布直方圖,分別求出A,B兩個級部的中位數(shù)的估計值(精確到);請根據(jù)以上計算結(jié)果初步分析A,B兩個級部的教學(xué)成績的優(yōu)劣.
附表:
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動點到坐標(biāo)原點的距離的最大值;
(Ⅱ)若曲線與曲線相交于,兩點,且與軸相交于點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com