【題目】已知,其對稱軸為,且

1)求的解析式;

2)若對任意及任意,恒成立,求實數(shù)的取值范圍.

【答案】1;(2.

【解析】

1)由二次函數(shù)的對稱軸可得出的值,再由可求出實數(shù)的值,從而可得出函數(shù)的解析式;

2)由題意知,對任意的及任意,不等式恒成立,可得出均滿足不等式,由此可得出不等式組對任意的恒成立,利用參變量分離法得出,分別求出函數(shù)、在區(qū)間的最小值,可解出實數(shù)的取值范圍.

1)二次函數(shù)的對稱軸為直線,得,

,又;

2)由題意知,不等式對任意的及任意恒成立,構(gòu)造函數(shù),

由題意可得對任意的恒成立,

所以對任意的恒成立,

對于函數(shù),當(dāng)時,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立,所以在區(qū)間上的最小值為,,得;

由于函數(shù)在區(qū)間上單調(diào)遞增,則當(dāng)時,函數(shù)取得最小值,解得.

綜上所述,實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;

(2)若曲線, 相交于兩點, 的中點為,過點做曲線的垂線交曲線兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, , , 是棱的中點,且.

(Ⅰ)求證: 平面

(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足, .

(1)求的通項公式;

(2)各項均為正數(shù)的等比數(shù)列中, , ,求的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的方程是y2=1.

(1)直線l的傾斜角為,被雙曲線截得的弦長為,求直線l的方程;

(2)過點P(3,1)作直線l′,使其被雙曲線截得的弦恰被P點平分,求直線l′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .若曲線在點處的切線方程為為自然對數(shù)的底數(shù)).

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式在(0,+)上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列三個命題,其中所有錯誤命題的序號是______

拋物線的準(zhǔn)線方程為;

過點作與拋物線只有一個公共點的直線t僅有1條;

是拋物線上一動點,以P為圓心作與拋物線準(zhǔn)線相切的圓,則這個圓一定經(jīng)過一個定點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某重點中學(xué)將全部高一新生分成A,B兩個成績相當(dāng)(成績的均值、方差都相同)的級部,A級部采用傳統(tǒng)形式的教學(xué)方式,B級部采用新型的基于信息化的自主學(xué)習(xí)教學(xué)方式.期末考試后分別從兩個級部中各隨機抽取100名學(xué)生的數(shù)學(xué)成績進行統(tǒng)計,得到如下數(shù)據(jù):

A級部教學(xué)

成績分組

頻數(shù)

18

23

29

23

6

1

B級部教學(xué)

成績分組

頻數(shù)

8

16

24

28

21

3

若成績不低于130分者為“優(yōu)秀”.

根據(jù)上表數(shù)據(jù)分別估計A,B兩個級部“優(yōu)秀”的概率;

(2)填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為“優(yōu)秀”與教學(xué)方式有關(guān)?

是否優(yōu)秀

級部

優(yōu)秀

不優(yōu)秀

合計

A級部

B級部

合計

(3)根據(jù)上表數(shù)據(jù)完成下面的頻率分布直方圖,并根據(jù)頻率分布直方圖,分別求出A,B兩個級部的中位數(shù)的估計值(精確到);請根據(jù)以上計算結(jié)果初步分析A,B兩個級部的教學(xué)成績的優(yōu)劣.

附表:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動點到坐標(biāo)原點的距離的最大值;

(Ⅱ)若曲線與曲線相交于,兩點,且與軸相交于點,求的值.

查看答案和解析>>

同步練習(xí)冊答案