如圖,幾何體是四棱錐,△為正三角形,.

(Ⅰ)求證:

(Ⅱ)若∠,M為線段AE的中點,

求證:∥平面.

 (I)設(shè)中點為O,連接OC,OE,則由知,,

又已知,所以平面OCE.

所以,即OEBD的垂直平分線,

所以.

(II)取AB中點N,連接,

MAE的中點,∴

∵△是等邊三角形,∴.

由∠BCD=120°知,∠CBD=30°,所以∠ABC=60°+30°=90°,即,

所以NDBC

所以平面MND∥平面BEC,故DM∥平面BEC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、三視圖如圖的幾何體是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F(xiàn)為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內(nèi)的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省兗州市高三9月入學(xué)第一次診斷檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,幾何體是四棱錐,△為正三角形,.

(1)求證:

(2)若∠,M為線段AE的中點,求證:∥平面.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(山東卷解析版) 題型:解答題

如圖,幾何體是四棱錐,△為正三角形,.

(Ⅰ)求證:;

(Ⅱ)若∠,M為線段AE的中點,

求證:∥平面.

 

查看答案和解析>>

同步練習(xí)冊答案