若在數(shù)列{an}中,a1=3,an+1=an+n,通項an=
n2-n+6
2
n2-n+6
2
分析:由已知利用“an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1”即可得出.
解答:解:∵a1=3,an+1=an+n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(n-1)+(n-2)+…+1+3
=
(n-1)(1+n-1)
2
+3
=
n2-n+6
2

故答案為:
n2-n+6
2
點評:本題考查了“累加求和”求熟練的通項公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若在數(shù)列{an}中,對任意n∈N+,都有
an+2-an+1
an+1-an
=k
(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下列是對“等差比數(shù)列”的判斷:
①k不可能為0
②等差數(shù)列一定是等差比數(shù)列
③等比數(shù)列一定是等差比數(shù)列
④若an=-3n+2,則數(shù)列{an}是等差比數(shù)列;
其中正確的判斷是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
axa+x
(x≠-a)
,且f(2)=1.
(Ⅰ)求a的值;
(Ⅱ)若在數(shù)列{an}中,a1=1,an+1=f(an),(n∈N*),計算a2,a3,a4,并由此猜想通項公式an;
(Ⅲ)證明(Ⅱ)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在數(shù)列{an}中,a1=5,an=a1+a2+…+an-1,則數(shù)列{an}的通項公式是
an=
5,    n=1
5•2n-2,   n≥2
an=
5,    n=1
5•2n-2,   n≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在數(shù)列{an}中,a1=2,an+1=an+lg(1+n-1),則a10=
 

查看答案和解析>>

同步練習(xí)冊答案