已知命題p:“?x∈[1,2],x2-lnx-a≥0”與命題q:“?x∈R,x2+2ax-8-6a=0”都是真命題,則實(shí)數(shù)a的取值范圍   
【答案】分析:解命題P是恒成立問題,利用變量分流,構(gòu)造新函數(shù),用最值法求解,命題q即為方程有解.
解答:解:∵?x∈[1,2],x2-lnx-a≥0
∴a≤
令:f(x)=
則f′(x)=
∵f′(x)>0
∴f(x)在[1,2]上增函數(shù)
∴f(x)的最小值為
∴a≤
又命題q:“?x∈R,x2+2ax-8-6a=0”是真命題
∴△=4a2+32+24a≥0
∴a≥-2或a≤-4
又∵命題p:“?x∈[1,2],x2-lnx-a≥0”與命題q:“?x∈R,x2+2ax-8-6a=0”都是真命題
∴實(shí)數(shù)a的取值范圍 是(-∞,-4]∪[-2,]
點(diǎn)評:本題通過常用邏輯用語來考查不等式怛成立問題和方程解的問題,難度空間很大,應(yīng)熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x=2k+1(k∈Z),命題q:x=4k-1(k∈Z),則p是q的( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是
?x?R,x2+2ax+a>0
?x?R,x2+2ax+a>0
;若命題p為假命題,則實(shí)數(shù)a的取值范圍是
(0,1)
(0,1)

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�