已知橢圓的由頂點(diǎn)為A,右焦點(diǎn)為F,直線與x軸交于點(diǎn)B且與直線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,過(guò)點(diǎn)F的直線與橢圓交于不同的兩點(diǎn)M,N.

(1)求橢圓的方程;

(2)求的面積的最大值.

 

(1);(2)

【解析】

試題分析:(1)由直線與x軸交于點(diǎn)B且與直線交于點(diǎn)C, .即可得到關(guān)于的兩個(gè)方程.從而得到結(jié)論.

(2)首先考慮直線MN垂直于x軸的情況,求出的面積.由(1)得到的方程聯(lián)立直線方程,消去y得到一個(gè)關(guān)于x的方程,由韋達(dá)定理寫(xiě)出兩個(gè)等式.由弦長(zhǎng)公式即點(diǎn)到直線的距離公式,即可求出的面積的.再利用最值的求法,即可的結(jié)論.

試題解析:(1) 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719122083903169/SYS201411171912310114217698_DA/SYS201411171912310114217698_DA.008.png"> , ,則,得

橢圓方程為:

(2) ①當(dāng)直線與x軸不垂直時(shí),設(shè)直線,

消去,

所以

的距離,則,

所以

② 當(dāng)軸時(shí),,所以的面積的最大值為

考點(diǎn):1.待定系數(shù)法求橢圓的方程.2.韋達(dá)定理.3.弦長(zhǎng)公式.4.點(diǎn)到直線的距離公式.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省南昌市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的最小正周期為,為了得到函數(shù)

的圖象,只要將的圖象( )

A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度

C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省高三聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知數(shù)列,若點(diǎn)均在直線上,則數(shù)列的前9項(xiàng)和等于( )

A.16 B.18 C.20 D.22

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

在數(shù)列中,.為計(jì)算這個(gè)數(shù)列前10項(xiàng)的和S,現(xiàn)給出該問(wèn)題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語(yǔ)句是___________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)是三個(gè)不重合的平面, 是直線,給出下列四個(gè)命題:①若;②若;③若上有兩點(diǎn)到的距離相等,則;④若,則其中正確命題的序號(hào) ( )

A. ②④ B. ①④ C. ②③ D. ①②

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知集合,則集合________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

定義在R上的函數(shù),滿足,若,則有( )

A. B. C. D.不能確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省高三百校聯(lián)合調(diào)研測(cè)試(一)數(shù)學(xué)試卷(解析版) 題型:填空題

已知數(shù)列的首項(xiàng),其前項(xiàng)和為,且滿足.若對(duì)任意的恒成立,則的取值范圍是        .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

一個(gè)圓柱形圓木的底面半徑為1m,長(zhǎng)為10m,將此圓木沿軸所在的平面剖成兩個(gè)部分.現(xiàn)要把其中一個(gè)部分加工成直四棱柱木梁,長(zhǎng)度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關(guān)于θ的函數(shù)表達(dá)式;

(2)求的值,使體積V最大;

(3)問(wèn)當(dāng)木梁的體積V最大時(shí),其表面積S是否也最大?請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案