已知函數(shù)f(x)=2cosxcos(
π
6
-x)-
3
sin2x+sinxcosx,x∈(-
π
3
,
π
2
).
(Ⅰ)求函數(shù)f(x)單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)的值域.
考點:三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用兩角和公式和二倍角公式對函數(shù)解析式化簡整理,利用三角函數(shù)的性質(zhì)求得函數(shù)的單調(diào)增區(qū)間.
(2)根據(jù)x的范圍求得三角函數(shù)的最大和最小值.則f(x)的值域可得.
解答: (1)∵f(x)=
3
cos2x+sin2x
=2sin(2x+
π
3
)

由-
π
2
+2kπ≤2x≤
π
2
+2kπ,得-
12
+kπ≤x≤
π
12
+kπ,k∈Z

x∈(-
π
3
, 
π
2
)
,
單調(diào)增區(qū)間為(-
π
3
, 
π
12
)

(2)∵x∈(-
π
3
, 
π
2
)
,
-
π
3
<2x+
π
3
3
,
f(x)=2sin(2x+
π
3
)
,
f(x)∈(-
3
, 2]

∴函數(shù)f(x)的值域為(-
3
, 2]
點評:本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)圖象及性質(zhì).解題的過程中注意對自變量x的范圍的關(guān)注以及正弦函數(shù)圖象.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若B=120°,AC=
3
,則
BC
sinA
=( 。
A、2
B、1
C、
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖某拋物線形拱橋跨度是20cm,拱橋高度是4m,在建橋時,每4m需用一根支柱支撐,求其中最長支柱AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<
π
2
)的最高點D的坐標(biāo)(
π
8
,2),由D點運(yùn)動到相鄰最低點時函數(shù)曲線與x軸的交點(
8
,0)
(1)求f(x)的解析式
(2)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx),求證:向量
a
與向量
b
不可能平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N*).
(1)求證:數(shù)列{
1
an
+(-1)n}是等比數(shù)列,并求數(shù)列{an}的通項公式an;
(2)設(shè)bn=an•sin
(2n-17)π
2
,數(shù)列{bn}的前n項和為Tn,求證:對任意n∈N*,有Tn
4
7
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=a+2i(a∈R),z2=3-4i,且
.
z1
z2
在復(fù)平面內(nèi)的對應(yīng)點在虛軸上,求復(fù)數(shù)z1及|z1|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,長軸長為4,M為右頂點,過右焦點F的直線與橢圓交于A、B兩點,直線AM、BM與x=4分別交于P、Q兩點,(P、Q不重合).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:
FP
FQ
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
1
2
x2
(1)討論f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[
1
e
,e]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案