巴西世界杯足球賽正在如火如荼進(jìn)行.某人為了了解我校學(xué)生“通過電視收看世界杯”是否與性別有關(guān),從全校學(xué)生中隨機(jī)抽取30名學(xué)生進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男生女生合計(jì)
收看    10
不收看   8
合計(jì)  30
已知在這30名同學(xué)中隨機(jī)抽取1人,抽到“通過電視收看世界杯”的學(xué)生的概率是
8
15

(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整,并據(jù)此資料分析“通過電視收看世界杯”與性別是否有關(guān)?
(Ⅱ)若從這30名同學(xué)中的男同學(xué)中隨機(jī)抽取2人參加一活動,記“通過電視收看世界杯”的人數(shù)為X,求X的分布列和均值.
(參考公式:K2=
n(ad-bc)2
(a+b)(a+c)(c+d)(b+d)
,n=a+b+c+d)
P(K2>k0  0.1000.0500.010
k02.7063.8416.635
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(Ⅰ)由已知數(shù)據(jù)可求得2×2列聯(lián)表,計(jì)算觀測值,把求得的觀測值同臨界值進(jìn)行比較,得到?jīng)]有充足的理由認(rèn)為“通過電視收看世界杯”與性別有關(guān);
(Ⅱ)X的可能取值為0,1,2,結(jié)合變量對應(yīng)的事件利用等可能事件的概率公式做出概率,寫出分布列和期望.
解答: 解:(Ⅰ)
男生女生合計(jì)
收看10616
不收看6814
合計(jì)161430
由已知數(shù)據(jù)得:K2=
30×(10×8-6×6)2
16×14×16×14
≈1.158<3.841
所以,沒有充足的理由認(rèn)為“通過電視收看世界杯”與性別有關(guān).…(4分)
(Ⅱ)X的可能取值為0,1,2,則
P(X=0)=
C
2
6
C
2
16
=
1
8
,P(X=1)=
C
1
6
C
1
10
C
2
16
=
1
2
,P(X=2)=
C
2
10
C
2
16
=
3
8
,…(6分)
所以X的分布列為:
X012
P
1
8
1
2
3
8
X的均值為:EX=0×
1
8
+1×
1
2
+2×
3
8
=
5
4
      …(8分)
點(diǎn)評:本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查離散型隨機(jī)變量的分布列和期望,是一個(gè)綜合題,準(zhǔn)確的數(shù)據(jù)運(yùn)算是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-a)sinx+cosx,x∈(0,π).
(Ⅰ)當(dāng)a=
π
2
時(shí),求函數(shù)f(x)值域;
(Ⅱ)當(dāng)a>
π
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有20件產(chǎn)品,其中6件是次品,其余都是合格品,現(xiàn)不放回地從中依次抽2件,求:
(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的條件下,第二次抽到次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2
-(1+a)x
(1)當(dāng)a=-
1
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對定義域內(nèi)的任意x都成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對于任意的正整數(shù)m,n,不等式
1
ln(m+1)
+
1
ln(m+2)
+…+
1
ln(m+n)
n
m(m+n)
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式|x+2|+|x-1|<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校運(yùn)動會開幕式上舉行升旗儀式,旗桿正好處在坡度15°的看臺的某一列的正前方,從這一列的第一排和最后一排測得旗桿頂部的仰角分別為60°和30°,第一排和最后一排的距離為10
6
米(如圖所示),旗桿底部與第一排在一個(gè)水平面上.若國歌長度約為50秒,升旗手應(yīng)以多大的速度勻速升旗?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)扇形OAB的面積是1,它的周長是4,求∠AOB的大小和弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2,當(dāng)x>0時(shí),f(x+1)=f(x)+f(1),若直線y=kx與函數(shù)y=f(x)的圖象恰有3個(gè)不同的公共點(diǎn),則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在(0,+∞)上的可導(dǎo)函數(shù),且f(x)>xf′(x)恒成立,則不等式x2f(
1
x
)-f(x)>0的解集為
 

查看答案和解析>>

同步練習(xí)冊答案