已知a∈R,則“a≥0”是“函數(shù)f(x)=x2+|x-a|在(-∞,0]上是減函數(shù)”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:化函數(shù)為分段函數(shù),分別由二次函數(shù)的單調(diào)性可得a的范圍,可得答案.
解答: 解:∵f(x)=x2+|x-a|=
x2+x-a,x≥a
x2-x+a,x<a
,
由二次函數(shù)可知y=x2+x-a在(-∞,-
1
2
)單調(diào)遞減,(-
1
2
,+∞)單調(diào)遞增,
∴必有a≥0,
同理可得y=x2-x+a在(-∞,
1
2
)單調(diào)遞減,(
1
2
,+∞)單調(diào)遞增,
∴亦必有a≥0,
綜合可得a≥0,
故“a≥0”是“函數(shù)f(x)=x2+|x-a|在(-∞,0]上是減函數(shù)”的充要條件
故選:C.
點(diǎn)評:本題考查充要條件的判定,涉及二次函數(shù)的單調(diào)性,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{cn}的通項(xiàng)是cn=
4n+31
2n-1
,則數(shù)列{cn}中的正整數(shù)項(xiàng)有( 。╉(xiàng).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量X~B(2,P),隨機(jī)變量Y~B(3,P),若P(X≥1)=
5
9
,則P(Y≥1)等于(  )
A、
19
27
B、
5
9
C、
7
9
D、
5
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體ABCD,則在四面體ABCD中,下列結(jié)論正確的是(  )
A、平面ABD⊥平面ABC
B、平面ADC⊥平面BDC
C、平面ABC⊥平面BDC
D、平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)M(1,1)作斜率為-
1
2
的直線與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)相交于A,B,若M是線段AB的中點(diǎn),則橢圓C的離心率為( 。
A、
2
2
B、
3
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={0,1,2,3,4},B={x|x<2},則A∩B=(  )
A、∅
B、{0,1}
C、{0,1,2}
D、{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a1a2a3=-8,則a2等于(  )
A、-
8
3
B、-2
C、±
8
3
D、±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對該班50名學(xué)生進(jìn)行了問卷調(diào)查,得到如圖的2×2列聯(lián)表.
喜愛打籃球不喜愛打籃球合計(jì)
男生20525
女生101525
合計(jì)305050
則至少有( 。┑陌盐照J(rèn)為喜愛打籃球與性別有關(guān).附參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2>k00.100.050.0250.0100.0050.001
k02.7063.8413.0046.6157.78910.828
A、95%B、99%
C、99.5%D、99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

莫言是中國首位獲得諾貝爾獎的文學(xué)家,國人歡欣鼓舞,某學(xué)校文學(xué)社從男女生中各抽取100名學(xué)生調(diào)查對莫言作品的了解程度,對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.調(diào)查結(jié)果如下表:
男生女生合計(jì)
非常了解80m140
一般了解n4060
合計(jì)100100200
參考數(shù)據(jù):K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.500.400.252.150.100.020.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(1)求m,n的值;
(2)在犯錯誤的概率下不超過多少的前提下認(rèn)為“對莫言作品非常了解與性別有關(guān)”?

查看答案和解析>>

同步練習(xí)冊答案