設不同的直線m、n和不同的平面α、β,給出下列四個命題,其中假命題有(  )

 ②、 ④

A.0個                                        B.1個

C.2個                                        D.3個

思路解析:①正確;②錯誤,因為n可能在β內(nèi);③錯誤,因為m、n可能平行;④錯誤,因為m可能平行于β.

答案:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+y2=1
(a>0)的兩個焦點是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點.
(Ⅰ)求a的取值范圍;
(Ⅱ)若橢圓上的點到焦點的最短距離為
3
-
2
,求橢圓的方程;
(Ⅲ)對(2)中的橢圓C,直線l:y=kx+m(k≠0)與C交于不同的兩點M、N,若線段MN的垂直平分線恒過點A(0,-1),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設G,Q分別為△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.
(I)求點C的軌跡E的方程;
(II)若l0是過點P(1,0)且垂直于x軸的直線,是否存在直線l,使得l與曲線E交于兩個不同的點M,N,且MN恰被l0平分?若存在,求出l的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)設橢圓C:
x2
a2
+y2=1(a>0)
的兩個焦點是F1(-c,0)和F2(c,0)(c>0),且橢圓C上的點到焦點F2的最短距離為
3
-
2

(1)求橢圓的方程;
(2)若直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M、N,線段MN垂直平分線恒過點A(0,-1),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•朝陽區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
經(jīng)過點A(2,1),離心率為
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(3,0)的直線l與橢圓C交于不同的兩點M,N,設直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

同步練習冊答案