【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請說明理由.

【答案】(1)單調(diào)減區(qū)間為;(2)存在常數(shù)滿足題意.

【解析】

試題分析:(1)求導(dǎo)可得當(dāng);

2)原命題化為.當(dāng)時,原命題化為,再利用導(dǎo)數(shù)工具可得.當(dāng)時,原命題化為恒成立,再利用導(dǎo)數(shù)工具可得,即存在常數(shù)滿足題意.

試題解析:(1,又由題意有:,故.此時,,由,所以函數(shù)的單調(diào)減區(qū)間為.2)要恒成立,即.當(dāng)時,,則要:恒成立,令,再令,所以內(nèi)遞減,所以當(dāng)時,,故,所以內(nèi)遞增,.當(dāng)時,,則要:恒成立,由可知,當(dāng)時,,所以內(nèi)遞增,

所以當(dāng)時,,故,所以內(nèi)遞增,.綜合①②可得:,即存在常數(shù)滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍;

2是否存在整數(shù),使得關(guān)于的不等式的解集為?若存在,求出的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)原有員工1000人,每人每年可為企業(yè)創(chuàng)利潤15萬元,為應(yīng)對國際金融危機(jī)給企業(yè)帶來的不利影響,該企業(yè)實(shí)施優(yōu)化重組,分流增效的策略,分流出一部分員工待崗為維護(hù)生產(chǎn)穩(wěn)定,該企業(yè)決定待崗人數(shù)不超過原有員工的2%,并且每年給每位待崗員工發(fā)放生活補(bǔ)貼1萬元據(jù)評估,當(dāng)待崗員工人數(shù)不超過原有員工14%時,留崗員工每人每年可為企業(yè)多創(chuàng)利潤萬元;當(dāng)待崗員工人數(shù)超過原有員工14%時,留崗員工每人每年可為企業(yè)多創(chuàng)利潤18萬元

1求企業(yè)年利潤萬元關(guān)于待崗員工人數(shù)的函數(shù)關(guān)系式;

2為使企業(yè)年利潤最大,應(yīng)安排多少員工待崗?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.則事件抽到的是二等品或三等品的概率為(  )

A. 0.7 B. 0.65

C. 0.35 D. 0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓心坐標(biāo)為(,1)的圓Mx軸及直線y=x分別相切于AB兩點(diǎn),另一圓N與圓M外切、且與x軸及直線y=x分別相切于CD兩點(diǎn).

1)求圓M和圓N的方程;

2)過點(diǎn)B作直線MN的平行線l,求直線l被圓N截得的弦的長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是BC,CC1的中點(diǎn).

(Ⅰ)證明:平面AEF⊥平面B1BCC1;

(Ⅱ)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金萬元的關(guān)系分別為其中都為常數(shù),函數(shù)對應(yīng)的曲線如圖所示.

(1)求函數(shù)的解析式;

(2)若該商場一共投資8萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)為圓心的圓過原點(diǎn).

(1)設(shè)直線與圓交于點(diǎn),若,求圓的方程;

(2)在(1)的條件下,設(shè),且分別是直線和圓上的動點(diǎn),求的最大值及此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:

(1)請將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式.

(2)將y=f(x)圖象上所有點(diǎn)向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.

查看答案和解析>>

同步練習(xí)冊答案