【題目】已知有限集合,定義如下操作過程:從中任取兩個(gè)元素、,由中除了、以外的元素構(gòu)成的集合記為;①若,則令;②若,則;這樣得到新集合,例如集合經(jīng)過一次操作后得到的集合可能是也可能得到等,可繼續(xù)對(duì)取定的實(shí)施操作過程,得到的新集合記作,……,如此經(jīng)過次操作后得到的新集合記作,設(shè),對(duì)于,反復(fù)進(jìn)行上述操作過程,當(dāng)所得集合只有一個(gè)元素時(shí),則所有可能的集合為______.
【答案】
【解析】
先根據(jù)定義用運(yùn)算律證明實(shí)施的具體操作過程無關(guān),再根據(jù)結(jié)果逆推求解.
解:由題可知中僅有一項(xiàng),令
對(duì)于滿足的實(shí)數(shù)定義運(yùn)算:,
下面證明這種運(yùn)算滿足交換律和結(jié)合律.
因?yàn)?/span>,且,所以,即該運(yùn)算滿足交換律;
因?yàn)?/span>
且,
所以,即該運(yùn)算滿足結(jié)合律;
所以中的項(xiàng)與實(shí)施的具體操作過程無關(guān);
選擇如下操作過程求:由題可知;
易知;
所以:
易知經(jīng)過3次操作后剩下一項(xiàng)為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價(jià)為元,則他的滿意度為;如果他買進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿意度為.如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為和,則他對(duì)這兩種交易的綜合滿意度為.
現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為元和元,甲買進(jìn)A與賣出B的綜合滿意度為,乙賣出A與買進(jìn)B的綜合滿意度為
(1)求和關(guān)于、的表達(dá)式;當(dāng)時(shí),求證:=;
(2)設(shè),當(dāng)、分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?(3)記(2)中最大的綜合滿意度為,試問能否適當(dāng)選取、的值,使得和同時(shí)成立,但等號(hào)不同時(shí)成立?試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校升旗儀式上,主持人站在主席臺(tái)前沿D處,測(cè)得旗桿AB頂部的仰角為俯角最后一排學(xué)生C的俯角為最后一排學(xué)生C測(cè)得旗桿頂部的仰角為旗桿底部與學(xué)生在一個(gè)水平面上,并且不計(jì)學(xué)生身高.
(1)設(shè)米,試用和表示旗桿的高度AB(米);
(2)測(cè)得米,若國歌長度約為50秒,國旗班升旗手應(yīng)以多大的速度勻速升旗才能是國旗到達(dá)旗桿頂點(diǎn)時(shí)師生的目光剛好停留在B處?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠擬用集裝箱托運(yùn)甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運(yùn)能力等限制數(shù)據(jù)列在表中,如何設(shè)計(jì)甲、乙兩種貨物應(yīng)各托運(yùn)的箱數(shù)可以獲得最大利潤,最大利潤是多少?
貨物 | 體積箱 | 重量箱 | 利潤百元箱 |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托運(yùn)限制 | 24 | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形沿對(duì)角線折成直二面角,有如下四個(gè)結(jié)論:
①;
②是等邊三角形;
③與平面所成的角為;
④與所成的角為.
其中錯(cuò)誤的結(jié)論是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)
(3) 從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且滿足.
(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;
(2)設(shè)函數(shù),求在區(qū)間上的最大值;
(3)若存在實(shí)數(shù)m,使得關(guān)于x的方程恰有4個(gè)不同的正根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如圖所示:
(1)估計(jì)該校男生的人數(shù);
(2)估計(jì)該校學(xué)生身高在170~185cm的概率;
(3)從樣本中身高在180~190cm的男生中任選2人,求至少有1人身高在185~190cm的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com