已知點(diǎn)E,F(xiàn)的坐標(biāo)分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點(diǎn)P,且它們的斜率之積為
(1)求證:點(diǎn)P的軌跡在橢圓上;
(2)設(shè)過原點(diǎn)O的直線AB交(1)題中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB;
(3)某同學(xué)由(2)題結(jié)論為特例作推廣,得到如下猜想:
設(shè)點(diǎn)M(a,b)(ab≠0)為橢圓內(nèi)一點(diǎn),過橢圓C中心的直線AB與橢圓分別交于A、B兩點(diǎn).則當(dāng)且僅當(dāng)kOM=-kAB時(shí),△MAB的面積取得最大值.
問:此猜想是否正確?若正確,試證明之;若不正確,請(qǐng)說明理由.
【答案】分析:(1)由已知中點(diǎn)E,F(xiàn)的坐標(biāo)分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點(diǎn)P,且它們的斜率之積為.我們?cè)O(shè)出P(x,y),進(jìn)而得到x,y之間的關(guān)系式,整理后即可得到點(diǎn)P的軌跡方程.
(2)設(shè)直線AB的方程為y=kx,A(x1,kx1),則B(-x1,-kx1),聯(lián)立直線和橢圓的方程,我們可得,利用弦定公式,求出AB的長,利用點(diǎn)到直線公式,求出M點(diǎn)直線AB的距離求出AB邊的高,可以得到△MAB面積的表達(dá)式,進(jìn)而求出△MAB面積m的取值范圍,得到△MAB面積m的,代入可求出對(duì)應(yīng)的k值.
(3)設(shè)M(1,4),根據(jù)(2)的計(jì)算辦法,我們易求出,△MAB的面積取得最大值時(shí),并求出此進(jìn)kOM及kAB的值,驗(yàn)證后,可得猜想不成立.
解答:證明:(1)設(shè)P(x,y),由直線PE,PF的斜率均存在可知,x≠±2
由題意可得,
整理可得,(x≠±2)
點(diǎn)P的軌跡為橢圓
(2)設(shè)直線AB的方程為y=kx,A(x1,kx1),則B(-x1,-kx1
聯(lián)立方程
整理可得
AB=2OA==
∵M(jìn)()到直線AB的距離d=
==m
則4(1-m2)k2-4k+1-m2=0
則42-4•4(1-m2)•(1-m2)≥0
即(1-m22≤1
又由m≥0可得
0≤m≤
即三角形MAB的最大值為
代入4(1-m2)k2-4k+1-m2=0得
k=
(3)設(shè)M(1,),則M點(diǎn)在橢圓內(nèi)
由(2)中推導(dǎo)過程,可得
當(dāng)k0M=,kAB=-1時(shí),△MAB的面積取得最大值
此時(shí)kOM≠-kAB
故猜想:點(diǎn)M(a,b)(ab≠0)為橢圓內(nèi)一點(diǎn),
過橢圓C中心的直線AB與橢圓分別交于A、B兩點(diǎn).
則當(dāng)且僅當(dāng)kOM=-kAB時(shí),△MAB的面積取得最大值正確
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與圓錐曲線的綜合問題,其中(1)的關(guān)鍵是分別求出兩條直線的斜率,進(jìn)而得到P點(diǎn)橫、縱坐標(biāo)的關(guān)系式,(2)的關(guān)鍵是得到△MAB面積的表達(dá)式,(3)中正面證明比較麻煩,可以舉出一反例,推反前面的猜想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A,B的坐標(biāo)分別是(0,-1),(0,1),直線AM,BM相交于點(diǎn)M,且它們的斜率之積為-
1
2

(1)求點(diǎn)M的軌跡C的方程;
(2)過D(2,0)的直線l與軌跡C有兩個(gè)不同的交點(diǎn)時(shí),求l的斜率的取值范圍;
(3)若過D(2,0),且斜率為
14
6
的直線l與(1)中的軌跡C交于不同的E、F(E在D、F之間),求△ODE與△ODF的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•普陀區(qū)二模)已知點(diǎn)E,F(xiàn)的坐標(biāo)分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點(diǎn)P,且它們的斜率之積為-
1
4

(1)求證:點(diǎn)P的軌跡在橢圓C:
x2
4
+y2=1
上;
(2)設(shè)過原點(diǎn)O的直線AB交(1)題中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為(1,
1
2
)
,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB;
(3)某同學(xué)由(2)題結(jié)論為特例作推廣,得到如下猜想:
設(shè)點(diǎn)M(a,b)(ab≠0)為橢圓C:
x2
4
+y2=1
內(nèi)一點(diǎn),過橢圓C中心的直線AB與橢圓分別交于A、B兩點(diǎn).則當(dāng)且僅當(dāng)kOM=-kAB時(shí),△MAB的面積取得最大值.
問:此猜想是否正確?若正確,試證明之;若不正確,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)E、F的坐標(biāo)分別是(-2,0)、(2,0),直線EP、FP相交于點(diǎn)P,且它們的斜率之積為-
1
4

(1)求證:點(diǎn)P的軌跡在一個(gè)橢圓C上,并寫出橢圓C的方程;
(2)設(shè)過原點(diǎn)O的直線AB交(1)中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為(1,
1
2
)
,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB;
(3)反思(2)題的解答,當(dāng)△MAB的面積取得最大值時(shí),探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點(diǎn)M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個(gè)特例),試提出一個(gè)猜想或設(shè)計(jì)一個(gè)問題,嘗試研究解決.
[說明:本小題將根據(jù)你所提出的猜想或問題的質(zhì)量分層評(píng)分].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市黃浦區(qū)格致中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

已知點(diǎn)E、F的坐標(biāo)分別是(-2,0)、(2,0),直線EP、FP相交于點(diǎn)P,且它們的斜率之積為
(1)求證:點(diǎn)P的軌跡在一個(gè)橢圓C上,并寫出橢圓C的方程;
(2)設(shè)過原點(diǎn)O的直線AB交(1)中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB
(3)反思(2)題的解答,當(dāng)△MAB的面積取得最大值時(shí),探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點(diǎn)M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個(gè)特例),試提出一個(gè)猜想或設(shè)計(jì)一個(gè)問題,嘗試研究解決.
[說明:本小題將根據(jù)你所提出的猜想或問題的質(zhì)量分層評(píng)分].

查看答案和解析>>

同步練習(xí)冊(cè)答案