若點P(x,y)滿足線性約束條件
2x-y<0
x-2y+2≥0
y≥0
,則z=x-y的取值范圍是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:線性規(guī)劃中的線性目標函數(shù)的最值,作出平面區(qū)域,直接平移直線求解
解答: 解:作出不等式組
2x-y<0
x-2y+2≥0
y≥0
所表示的平面區(qū)域,如圖:
作出直線x-y=0,對該直線進行平移,可以發(fā)現(xiàn)
當直線經(jīng)過點(0,0)時,Z取得最大值0,
當直線經(jīng)過點(-2,0)時,Z取得最小值-2,
所以Z的取值范圍為[-2,0).
故答案為:[-2,0).
點評:本題利用線性規(guī)劃中的最值去確定取值范圍,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

a
=(3,-sin2x),
b
=(cos2x,
3
),f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的最大值及取最大值時x的集合;
(Ⅲ)求滿足f(a)=-
3
且0<α<π的角α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-4x+3≤0},B={x|-1≤x≤2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U=R,集合M={y|y=x2+2},則∁UM=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(2-x)=f(x+2)成立,且當x∈[-2,0]時,f(x)=(
1
2
x-1.若關于x的方程f(x)-loga(x+2)=0(a>1)在區(qū)間,(0,6]內(nèi)恰有兩個不同實根,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|x+3|+|x-1|≥6的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

213化為二進制數(shù)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從x軸上一點A分別向函數(shù)f(x)=-x3與函數(shù)g(x)=
2
|x|3+x3
引不是水平方向的切線L1和L2分別與y軸相交于點B和點C,O為坐標原點,記△OAB的面積為S1,△OAC的面積為S2,則S1+S2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是
 

①若命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.
②已知實數(shù)x滿足log3x=sinθ+cosθ,其中θ∈[-
π
2
,0],若方程|3x-1|+x=k有解,則k∈[0,11]
③若命題p∧q為假,p∨q為真,則¬p與q的真假一定相同
④設△ABC的內(nèi)角分別為A、B、C,其對邊的長分別為a、b、c,若ab>c2,則C<
π
3

查看答案和解析>>

同步練習冊答案