9、用長(zhǎng)為90cm,寬為48cm的長(zhǎng)方形鐵皮做一個(gè)無(wú)蓋的容器,先在四角分別截去一個(gè)大小相同的小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接而成(如圖),當(dāng)容器的容積最大時(shí),該容器的高為( 。
分析:設(shè)容器的高為xcm,得容器的容積為V(x)與x之間的關(guān)系,為三次函數(shù),求導(dǎo),利用函數(shù)的單調(diào)性求出函數(shù)的最值.
解答:解:設(shè)容器的高為xcm,容器的容積為V(x)cm3,則
V(x)=(90-2x)(48-2x)x=4x3-276x2+4320x(0<x<24),
∵V′(x)=12x2-552x+4320,
由12x2-552x+4320=0得x=10或x=36(舍),
∵當(dāng)0<x<10時(shí),V′(x)>0,當(dāng)10<x<24時(shí),V′(x)<0,
∴當(dāng)x=10時(shí),V(x)在區(qū)間(0,24)內(nèi)有唯一極大值,
∴容器高x=10cm時(shí),容器容積V(x)最大.
故選C.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)在最大值問(wèn)題中的應(yīng)用,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值,若f(a)=0:a的左側(cè)f'(x)>0,a的右側(cè)f'(x)<0,則a是極大值點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

21、用長(zhǎng)為90cm,寬為48cm的長(zhǎng)方形鐵皮做一個(gè)無(wú)蓋的容器,先在四角分別截去一個(gè)小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接而成(如圖),問(wèn)該容器的高為多少時(shí),容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年北師大附中月考) 用長(zhǎng)為90cm、寬為48cm的長(zhǎng)方形鐵皮做一個(gè)無(wú)蓋的容器,先在四角分別截去一個(gè)小正方形,然后把四邊形翻轉(zhuǎn),再焊接而成(如圖),問(wèn)該容器的高為多少時(shí),容器的容積最大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省山實(shí)驗(yàn)高高三期考試文科數(shù)學(xué)卷 題型:解答題

(14分)用長(zhǎng)為90cm,寬為48cm的長(zhǎng)方形鐵皮做一個(gè)無(wú)蓋的容器,先在四角分別截去一個(gè)小正方形,然后把四邊翻折900角,再焊接而成,問(wèn)該容器的高為多少時(shí),容器的容積最大?最大的容積是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

21.

用長(zhǎng)為90cm,寬為48cm的長(zhǎng)方形鐵皮做一個(gè)無(wú)蓋的容器,先在四角分別截去一個(gè)小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接而成(如圖),問(wèn)該容器的高為多少時(shí),容器的容積最大?最大容積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案