于定義在D上的函數(shù),若同時滿足

①存在閉區(qū)間,使得任取,都有是常數(shù));

②對于D內(nèi)任意,當時總有;

則稱為“平底型”函數(shù).

(1)判斷 ,是否是“平底型”函數(shù)?簡要說明理由;Ks5u

(2)設是(1)中的“平底型”函數(shù),若,(

對一切恒成立,求實數(shù)的范圍;

(3)若是“平底型”函數(shù),求的值.

(1)不是 (2)

 (3) 當 是“平底型”函數(shù)


解析:

解:(1)是“平底型”函數(shù),

存在區(qū)間使得時,,當時,恒成立; [來源:高.考.資.源.  網(wǎng)] 不是“平底型”函數(shù),

不存在使得任取,都有 

(2)若,()對一切恒成立

    ,()恒成立  

      即  ,由于 

   即          解得  

     所以實數(shù)的范圍為  ;

(3)是“平底型”函數(shù),

所以存在區(qū)間,使得恒成立

 

,   解得 

時, 是“平底型”函數(shù);

存在區(qū)間,使時, ;且時,恒成立,

時, 不是“平底型”函數(shù)

綜合  當 是“平底型”函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點,若點B的坐標為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求實數(shù)C的值;
(2)在函數(shù)f(x)的圖象上是否存在點M(x0,y0),使f(x)在點M處的切線斜率為3b?若存在,求出點M的坐標;不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3+bx2+cx+d是定義在R上的函數(shù),其圖象與X軸交于A,B,C三點,若點B的坐標為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.則|AC|的取值范圍為
[3,4
3
]
[3,4
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•眉山二模)已知f(x)=ax3+bx2+cx+d是定義在R上的函數(shù),它在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(Ⅰ)求c的值;
(Ⅱ)在函數(shù)f(x)的圖象上是否存在點M(x0,y0),使得f(x)在點M的切線斜率為3b?若存在,求出M點的坐標,若不存在,則說明理由;
(Ⅲ)設f(x)的圖象交x軸于A、B、C三點,且B的坐標為(2,0),求線段AC的長度|AC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省眉山市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知f(x)=ax3+bx2+cx+d是定義在R上的函數(shù),它在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(Ⅰ)求c的值;
(Ⅱ)在函數(shù)f(x)的圖象上是否存在點M(x,y),使得f(x)在點M的切線斜率為3b?若存在,求出M點的坐標,若不存在,則說明理由;
(Ⅲ)設f(x)的圖象交x軸于A、B、C三點,且B的坐標為(2,0),求線段AC的長度|AC|的取值范圍.

查看答案和解析>>

同步練習冊答案