【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn , 且 (λ為常數(shù)).令cn=b2n , (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Rn

【答案】解:(Ⅰ)設(shè)等差數(shù)列{an}的首項(xiàng)為a1 , 公差為d.由S4=4S2 , a2n=2an+1.得
解得 a1=1,d=2.
因此 an=2n﹣1,n∈N*
(II)由(I)可得 =
當(dāng)n≥2時(shí),bn=Tn﹣Tn1= =
= ,n∈N*
∴Rn=0+ …= ,
= + +…+
兩式相減得 = = ,
∴Rn= ,
∴Rn=
∴數(shù)列{cn}的前n項(xiàng)和
【解析】(Ⅰ)設(shè)等差數(shù)列{an}的首項(xiàng)為a1 , 公差為d.由于S4=4S2 , a2n=2an+1.利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式可得
解出即可.(II)由(I)可得Tn . 當(dāng)n≥2時(shí),bn=Tn﹣Tn1 . 可得cn=b2n , n∈N* . 再利用“錯(cuò)位相減法”即可得出Rn

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知函數(shù),

(1)若曲線在點(diǎn)處的切線與直線垂直,求的值;

(2)若存在極小值時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),如果存在兩個(gè)不相等的正數(shù),使得,求證:

請(qǐng)考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個(gè)題目計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=2﹣f(x),若函數(shù)y= 與y=f(x)圖象的交點(diǎn)為(x1 , y1),(x2 , y2),…,(xm , ym),則 (xi+yi)=(
A.0
B.m
C.2m
D.4m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2-6x+8<0},B={x|(xa)(x-3a)<0}.

(1)若xAxB的充分條件,求a的取值范圍;

(2)若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), ).以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.

(Ⅰ)設(shè)為曲線上任意一點(diǎn),求的取值范圍;

(Ⅱ)若直線與曲線交于兩點(diǎn), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,有下列5個(gè)命題:

①若,則的圖象自身關(guān)于直線軸對(duì)稱;

的圖象關(guān)于直線對(duì)稱;

③函數(shù)的圖象關(guān)于軸對(duì)稱;

為奇函數(shù),且圖象關(guān)于直線對(duì)稱,則周期為2;

為偶函數(shù), 為奇函數(shù),且,則周期為2.

其中正確命題的序號(hào)是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)
(1)用定義證明:f(x)為R上的奇函數(shù);
(2)用定義證明:f(x)在R上為減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程的三個(gè)實(shí)根分別為一個(gè)橢圓,一個(gè)拋物線,一個(gè)雙曲線的離心率,則的取值范圍(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在二項(xiàng)式(axm+bxn12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開(kāi)式里最大系數(shù)項(xiàng)恰是常數(shù)項(xiàng).
(1)求它是第幾項(xiàng);
(2)求 的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案