已知點(diǎn)M(-4,3)和點(diǎn)N(2,15).

(1)若直線l1的傾斜角是直線MN傾斜角的兩倍,求直線l1的斜率;

(2)若直線l2與直線MN垂直,求直線l2的斜率,并由此猜想兩直線垂直;如果斜率存在,則積的值怎樣?

解析:(1)設(shè)直線MN的傾斜角為α,斜率為k,則有tanα=k==2.

由題意,直線l1的傾斜角為2α,設(shè)l1的斜率為k1,則由二倍角公式k1=tan2α===-.(2)設(shè)l2的傾斜角為β,如圖,由題意,得β=+α.

∴l(xiāng)2的斜率k2=tanβ=tan(+α)=-cotα=-=-=-.

兩直線垂直,如果斜率存在,其積為-1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(3,1),圓(x-1)2+(y-2)2=4.
(1)求過M點(diǎn)的圓的切線方程;
(2)若直線ax-y+4=0與圓相交于A、B兩點(diǎn),且弦AB的長(zhǎng)為2
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(3,1),直線ax-y+4=0及圓(x-1)2+(y-2)2=4.
(1)求過M點(diǎn)的圓的切線方程;
(2)若直線ax-y+4=0與圓相切,求a的值;
(3)若直線ax-y+4=0與圓相交于A,B兩點(diǎn),且弦AB的長(zhǎng)為2
3
,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�