已知正方形ABCD的邊長為1,點E是AB邊上的動點,則的值是         ,

的最大值             .

 

【答案】

 1,1

【解析】根據(jù)平面向量的點乘公式,由圖可知,, 因此=;

,而就是向量邊上的射影,要想讓最大,即讓射影最大,此時E點與B點重合,射影為,所以長度為1.

【考點定位】本題是平面向量問題,考查學(xué)生對于平面向量點乘知識的理解,其中包含動點問題,考查學(xué)生最值的求法

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為2,中心為O,四邊形PACE是直角梯形,設(shè)PA⊥平面ABCD,且PA=2,CE=1,
(1)求證:面PAD∥面BCE.
(2)求PO與平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為1,設(shè)
AB
=
a
BC
=
b
,
AC
=
c
,則|
a
-
b
+
c
|等于( 。
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為
2
,
AB
=
a
,
BC
=
b
,
AC
=
c
,則|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步練習(xí)冊答案