已知l,m,n是三條不同的直線,α,β是不同的平面,則α⊥β的一個充分條件是(    )
A.lα,mβ,且l⊥m
B.lα,mβ,nβ,且l⊥m,l⊥n
C.mα,nβ,m//n,且l⊥m
D.lα,l//m,且m⊥β
D

試題分析:對A.lα,mβ,且l⊥m   ,如下圖,α、β不垂直;對B.lα,mβ,nβ,且l⊥m,
l⊥n,如下圖,α、β不垂直;
;
對C.mα,nβ,m//n,且l⊥m,直線l沒有確定,則α、β的關(guān)系也不能確定;對D.lα,l//m,且m⊥β,則必有l(wèi)⊥β,根據(jù)面面垂直的判定定理知,α⊥β.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,矩形中,,,,且交于點.

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,邊長為2的菱形中,,點分別是的中點,將分別沿折起,使兩點重合于點.
                                          (1)求證:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直三棱柱中,,,D為BC中點.

(Ⅰ)求證:;
(Ⅱ)求證:;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:長方形所在平面與正所在平面互相垂直,分別為的中點.

(Ⅰ)求證:平面;
(Ⅱ)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點 
的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知、為不在同一直線上的三點,且,.

(1)求證:平面//平面;
(2)若平面,且,,求證:平面
(3)在(2)的條件下,設(shè)點上的動點,求當取得最小值時的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.

(1)求證:∥平面
(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)為兩兩不重合的平面,為兩兩不重合的直線,給出下列四個命題:
(1)若,則;
(2)若,,則
(3)若,,則;
(4)若,,,則
其中正確的命題是(  )
A.(1)(3)B.(2)(3)
C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知面,,直線,直線,斜交,則(  )
A.不垂直但可能平行B.可能垂直也可能平行
C.不平行但可能垂直D.既不垂直也不平行

查看答案和解析>>

同步練習冊答案