已知數(shù)列{}前n項(xiàng)和其中b是與n無(wú)關(guān)的常數(shù),且0<b<1,若存在,則________.

 

【答案】

1.

【解析】

試題分析:由,及存在得

,

因0<b<1,所以=0,又an=Sn-Sn-1,,

故上式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013032708311750008537/SYS201303270831447656357559_DA.files/image003.png">-b(1。

考點(diǎn):本題主要考查等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,數(shù)列的極限。

點(diǎn)評(píng):基礎(chǔ)題,通過(guò)構(gòu)建關(guān)于首項(xiàng),公比的方程,求得數(shù)列的通項(xiàng)公式,進(jìn)一步求和、求極限。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn和通項(xiàng)an滿足Sn=-
1
2
(an-1)

(1)求數(shù)列{an}的通項(xiàng)公式; 
(2)試證明Sn
1
2
;
(3)設(shè)函數(shù)f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求
1
b1
+
1
b2
+…+
1
b99
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且
1
2
,an,Sn
成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列滿足bn=(log2a2n+1)×(log2a2n+3),求證:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{bn}前n項(xiàng)和Sn=
3
2
n2-
1
2
n
,數(shù)列{an}滿足an3=4-(bn+2)(n∈N*),數(shù)列{cn}滿足cn=anbn
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn滿足an=2-2Sn
(I)求a1,a2;
(II)求通項(xiàng)公式an;
(III)求證數(shù)列{Sn-1}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知數(shù)列{an}前n項(xiàng)和Sn=-ban+1-
1
(1+b)n
其中b是與n無(wú)關(guān)的常數(shù),且0<b<1,若
limSn
n→∞
存在,則
limSn=
n→∞
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案