【題目】空氣質量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質量狀況的指數(shù),空氣質量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴重污染.某環(huán)保人士從當?shù)啬衬甑腁QI記錄數(shù)據(jù)中,隨機抽取了15天的AQI數(shù)據(jù),用如圖所示的莖葉圖記錄.根據(jù)該統(tǒng)計數(shù)據(jù),估計此地該年空氣質量為優(yōu)或良的天數(shù)約為__________.(該年為366天)
科目:高中數(shù)學 來源: 題型:
【題目】已知直線,
,過點
的直線
分別與直線
,
交于
,其中點
在第三象限,點
在第二象限,點
;
(1)若的面積為
,求直線
的方程;
(2)直線交于
點
,直線
交
于點
,若
直線的斜率均存在,分別設為
,判斷
是否為定值?若為定值,求出該定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,軸為極軸建立極坐標系,曲線
的方程為
(
為參數(shù)),曲線
的極坐標方程為
,若曲線
與
相交于
、
兩點.
(1)求的值;
(2)求點到
、
兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,
、
分別是
、
的中點.
(1)設棱的中點為
,證明:
平面
;
(2)若,
,
,且平面
平面
.
(i)求三棱柱的體積
;
(ii)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關,為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對某種雞的時段產(chǎn)蛋量
(單位:
)和時段投入成本
(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度
和產(chǎn)蛋量
的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中.
(1)根據(jù)散點圖判斷, 與
哪一個更適宜作為該種雞的時段產(chǎn)蛋量
關于雞舍時段控制溫度
的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立
關于
的回歸方程;
(3)已知時段投入成本與
的關系為
,當時段控制溫度為28℃時,雞的時段產(chǎn)蛋量及時段投入成本的預報值分別是多少?
附:①對于一組具有有線性相關關系的數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計分別為
②
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)若時,求函數(shù)
的最小值;
(2)若,證明:函數(shù)
有且只有一個零點;
(3)若函數(shù)有兩個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點,M為AH中點,PA=AC=2,BC=1.
(Ⅰ)求證:AH⊥平面PBC;
(Ⅱ)求PM與平面AHB成角的正弦值;
(Ⅲ)在線段PB上是否存在點N,使得MN∥平面ABC,若存在,請說明點N的位置,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com