如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E,F(xiàn)分別是棱BC,CC1的中點,P是側面BCC1B1內(nèi)一點,若A1P∥平面AEF,則線段A1P長度的取值范圍是(  )
分析:分別取棱BB1、B1C1的中點M、N,連接MN,易證平面A1MN∥平面AEF,由題意知點P必在線段MN上,由此可判斷P在M或N處時A1P最長,位于線段MN中點處時最短,通過解直角三角形即可求得.
解答:解:如下圖所示:
分別取棱BB1、B1C1的中點M、N,連接MN,連接BC1
∵M、N、E、F為所在棱的中點,∴MN∥BC1,EF∥BC1,
∴MN∥EF,又MN?平面AEF,EF?平面AEF,
∴MN∥平面AEF;
∵AA1∥NE,AA1=NE,∴四邊形AENA1為平行四邊形,
∴A1N∥AE,又A1N?平面AEF,AE?平面AEF,
∴A1N∥平面AEF,
又A1N∩MN=N,∴平面A1MN∥平面AEF,
∵P是側面BCC1B1內(nèi)一點,且A1P∥平面AEF,
則P必在線段MN上,
在Rt△A1B1M中,A1M=
A1B12+B1M2
=
1+(
1
2
)2
=
5
2
,
同理,在Rt△A1B1N中,求得A1N=
5
2
,
∴△A1MN為等腰三角形,
當P在MN中點O時A1P⊥MN,此時A1P最短,P位于M、N處時A1P最長,
A1O=
A1M2-OM2
=
(
5
2
)2-(
2
4
)2
=
3
2
4

A1M=A1N=
5
2
,
所以線段A1P長度的取值范圍是[
3
2
4
,
5
2
].
故選B.
點評:本題考查點、線、面間的距離問題,考查學生的運算能力及推理轉(zhuǎn)化能力,屬中檔題,解決本題的關鍵是通過構造平行平面尋找P點位置.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省南京市金陵中學高三(上)8月月考數(shù)學試卷(解析版) 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省合肥八中高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

同步練習冊答案