【題目】如圖,太湖一個角形湖灣( 常數(shù)為銳角). 擬用長度為(為常數(shù))的圍網(wǎng)圍成一個養(yǎng)殖區(qū),有以下兩種方案可供選擇:
方案一 如圖1,圍成扇形養(yǎng)殖區(qū),其中;
方案二 如圖2,圍成三角形養(yǎng)殖區(qū),其中;
(1)求方案一中養(yǎng)殖區(qū)的面積;
(2)求方案二中養(yǎng)殖區(qū)的最大面積;
(3)為使養(yǎng)殖區(qū)的面積最大,應選擇何種方案?并說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】觀察下列方程,并回答問題:
①;②;③;④;…
(1)請你根據(jù)這列方程的特點寫出第個方程;
(2)直接寫出第2009個方程的根;
(3)說出這列方程的根的一個共同特點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的左、右焦點分別為、,上頂點為,過與垂直的直線交軸負半軸于點,且.
(1)求橢圓的離心率;
(2)若過、、三點的圓恰好與直線相切,求橢圓的方程;
(3)過的直線與(2)中橢圓交于不同的兩點、,則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線經(jīng)過點A (1,0).
(1)若直線與圓C相切,求直線的方程;
(2)若直線與圓C相交于P,Q兩點,求三角形CPQ面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為為的導函數(shù).
(1)求方程的解集;
(2)求函數(shù)的最大值與最小值;
(3)若函數(shù)在定義域上恰有2個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
B. 在線性回歸分析中,回歸直線不一定過樣本點的中心
C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好
D. 自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關系叫做相關關系
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一項針對人們休閑方式的調(diào)查結果如下:受調(diào)查對象總計124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;
(2)根據(jù)下列提供的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關系?
獨立檢驗臨界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知焦點在軸上的橢圓的中心是原點,離心率為,以橢圓的端州的兩端點和兩焦點所圍成的四邊形的周長為8,直線:與軸交于點,與橢圓交于不同兩點,.
(1)求橢圓的標準方程;
(2)若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com