分析 (1)(n+1)a${\;}_{n+1}^{2}$+anan+1-na${\;}_{n}^{2}$=0對(duì)?n∈N*都成立.分解因式可得:[(n+1)an+1-nan](an+1+an)=0,由an+1+an>0,可得(n+1)an+1-nan=0,即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$.利用“累乘求積”方法即可得出.
(2)bn=a2n-1a2n+1=$\frac{1}{2n-1}•\frac{1}{2n+1}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用裂項(xiàng)求和方法、數(shù)列的單調(diào)性即可得出.
解答 (1)解:(n+1)a${\;}_{n+1}^{2}$+anan+1-na${\;}_{n}^{2}$=0對(duì)?n∈N*都成立.
∴[(n+1)an+1-nan](an+1+an)=0,∵an+1+an>0,
∴(n+1)an+1-nan=0,即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$=$\frac{n-1}{n}•\frac{n-2}{n-1}$•…•$\frac{1}{2}$•1=$\frac{1}{n}$.
(2)證明:bn=a2n-1a2n+1=$\frac{1}{2n-1}•\frac{1}{2n+1}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
數(shù)列{bn}的前n項(xiàng)和為Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$$<\frac{1}{2}$.
即Tn<$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、“累乘求積”方法、裂項(xiàng)求和方法、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 2$\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p假q真 | B. | p假q假 | C. | p真q真 | D. | p真q假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{16}$ | B. | $\frac{5}{8}$ | C. | $\frac{9}{16}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com