如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.
(1)試建立適當的坐標系,并寫出點P、B、D的坐標;
(2)問當實數a在什么范圍時,BC邊上能存在點Q,使得PQ⊥QD?
(3)當BC邊上有且僅有一個點Q使得PQ⊥QD時,求二面角Q-PD-A的大。
(1)P(0,0,1),B(1,1,0),D(0,a,0).(2)a≥0.(3).
解析試題分析:(1)以A為坐標原點,AB、AD、AP分
別為x、y、z軸建立坐標系如圖所示.∵PA=AB=1,BC=a,∴P(0,0,1),B(1,1,0),
D(0,a,0).
(2)設點Q(1,x,0),則.
由,得x2-ax+1=0.
顯然當該方程有實數解時,BC邊上才存在點Q,使得PQ⊥QD,故⊿=a2-4≥0.
因a>0,故a的取值范圍為a≥0.
(3)易見,當a=2時,BC上僅有一點滿足題意,此時x=1,即Q為BC的中點.
取AD的中點M,過M作MN⊥PD,垂足為N,連結QM、QN.則M(0,1,0),P(0,0,1),D(0,2,0).
∵D、N、P三點共線,∴.
又,且,
故.于是.
故.
∵,∴.∴∠MNQ為所求二面角的平面角.
∵,∴所求二面角為.
考點:本題考查了向量法在立體幾何中的運用
點評:空間向量就是一把解決立體幾何問題的鑰匙,利用向量解答立體幾何問題實現了形向數的轉化,降低了問題解決的難度
科目:高中數學 來源: 題型:解答題
如圖甲,設正方形的邊長為,點分別在上,并且滿足
,如圖乙,將直角梯形沿折到的位置,使點在
平面上的射影恰好在上.
(1)證明:平面;
(2)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,是以為直徑的半圓上異于、的點,矩形所在的平面垂直于該半圓所在的平面,且.
(Ⅰ)求證:;
(Ⅱ)設平面與半圓弧的另一個交點為.
①試證:;
②若,求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點.
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com