函數(shù)f(x)在點(diǎn)x=x0處的左、右極限相等是f(x)在點(diǎn)x=x0處連續(xù)的(  )

  A.充分不必要條件           B.必要不充分條件

  C.充要條件               D.既不充分也不必要條件

 

答案:B
提示:

  分析:根據(jù)f(x)在點(diǎn)x=x0處連續(xù)的定義,f(x)=f(x)=f(x0)。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
ax
+lnx-1
,g(x)=(lnx-1)ex+x(其中e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2+bx,a,b∈R

(1)曲線C:y=f(x)經(jīng)過點(diǎn)P(1,2),且曲線C在點(diǎn)P處的切線平行于直線y=2x+1,求a,b的值;
(2)在(1)的條件下試求函數(shù)g(x)=m[f(x)-
7
3
x](m∈R,m≠0)
的極小值;
(3)若f(x)在區(qū)間(1,2)內(nèi)存在兩個極值點(diǎn),求證:0<a+b<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海二模)已知函數(shù)f(x)=
1
3
x3+ax2+bx
(a,b∈R).
(Ⅰ)若曲線C:y=f(x)經(jīng)過點(diǎn)P(1,2),曲線C在點(diǎn)P處的切線與直線x+2y-14=0垂直,求a,b的值;
(Ⅱ)在(Ⅰ)的條件下,試求函數(shù)g(x)=(m2-1)[f(x)-
7
3
x]
(m為實常數(shù),m≠±1)的極大值與極小值之差;
(Ⅲ)若f(x)在區(qū)間(1,2)內(nèi)存在兩個不同的極值點(diǎn),求證:0<a+b<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=exax,g(x)=exlnx.(e≈2.718 28…).

(1)設(shè)曲線yf(x)在x=1處的切線與直線x+(e-1)y=1垂直,求a的值;

(2)若對于任意實數(shù)x≥0,f(x)>0恒成立,試確定實數(shù)a的取值范圍;

(3)當(dāng)a=-1時,是否存在實數(shù)x0∈[1,e],使曲線Cyg(x)-f(x)在點(diǎn)xx0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南模擬 題型:解答題

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1
,g(x)=(lnx-1)ex+x(其中e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案