設(shè)函數(shù)D(x)=
1,x為有理數(shù)
0,x為無(wú)理數(shù)
,關(guān)于函數(shù)D(x)有以下四個(gè)結(jié)論:
①D(x)值域?yàn)閇0,1];②D(x)是周期函數(shù);③D(x)是單調(diào)函數(shù);④D(x)是偶函數(shù);
其中正確的結(jié)論個(gè)數(shù)為(  )
A、0B、1C、2D、3
考點(diǎn):命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,簡(jiǎn)易邏輯
分析:由函數(shù)值域的定義易知①錯(cuò)誤;由函數(shù)周期性定義可判斷②正確;由函數(shù)單調(diào)性定義,易知③錯(cuò)誤;由偶函數(shù)定義可證明④正確;
解答: 解:∵函數(shù)D(x)=
1,x為有理數(shù)
0,x為無(wú)理數(shù)
,
∴D(x)值域?yàn)閧0,1},故①錯(cuò)誤;
∵D(x+1)=D(x),∴T=1為其一個(gè)周期,故②正確;
∵D(
2
)=0,D(2)=1,D(
5
)=0,顯然函數(shù)D(x)不是單調(diào)函數(shù),故③錯(cuò)誤;
∵D(-x)=D(x),故D(x)是偶函數(shù),故④正確;
故正確的結(jié)論有2個(gè),
故選:C
點(diǎn)評(píng):本題主要考查了函數(shù)的定義,偶函數(shù)的定義和判斷方法,函數(shù)周期性的定義和判斷方法,函數(shù)單調(diào)性的意義,屬基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3+2x-x2
的定義域?yàn)锳,集合B={x|(x-m-3)(x-m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求實(shí)數(shù)m的值;
(3)若C?∁RB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在集合{1,2,3,4,5}中任取一個(gè)偶數(shù)a和一個(gè)奇數(shù)b構(gòu)成以原點(diǎn)為起點(diǎn)的向量
α
=(a,b).從所有得到的以原點(diǎn)為起點(diǎn)的向量中任取兩個(gè)向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個(gè)數(shù)為n,其中面積等于2的平行四邊形的個(gè)數(shù)為m,則
m
n
=(  )
A、
2
15
B、
1
5
C、
4
15
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=
2
3
,且對(duì)任意的n∈N*都有an+1=
2an
an+1

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)任意的n∈N*都有an+1<pan,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)sin2α=-sinα,α∈(
π
2
,π),則tanα的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知5x+12y=60,則xy的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=(1-x)•x,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算“*”如下:a*b=
a,a≥b
b2,a<b
,則函數(shù)f(x)=(1*x)•x-(2*x)(x∈[-2,2])的最大值為(  )
A、12B、10C、8D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,且a2+c2-b2=
1
2
ac.
(Ⅰ)求sin2
A+C
2
+cos2B的值;
(Ⅱ)若b=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案