對(duì)于直線l上的任意點(diǎn)(x,y),點(diǎn)(4x+2y,x+3y)仍在直線上,求直線l的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距為2c,若
c
a
=
5
-1
2
(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F2(c,0),P為橢圓C上的任意一點(diǎn).是否存在過(guò)點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足
RP
=-3
PF2
?若存在,求直線l的斜率k;若不存在,請(qǐng)說(shuō)明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過(guò)焦點(diǎn)F1、F2.試寫(xiě)出“黃金雙曲線”的定義;對(duì)于上述命題,在黃金雙曲線中寫(xiě)出相關(guān)的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且過(guò)點(diǎn)P(2,
2
)
,設(shè)橢圓的右準(zhǔn)線l與x軸的交點(diǎn)為A,橢圓的上頂點(diǎn)為B,直線AB被以原點(diǎn)為圓心的圓O所截得的弦長(zhǎng)為
4
5
5

(1)求橢圓E的方程及圓O的方程;
(2)若M是準(zhǔn)線l上縱坐標(biāo)為t的點(diǎn),求證:存在一個(gè)異于M的點(diǎn)Q,對(duì)于圓O上任意一點(diǎn)N,有
MN
NQ
為定值;且當(dāng)M在直線l上運(yùn)動(dòng)時(shí),點(diǎn)Q在一個(gè)定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)如圖:中心為原點(diǎn)的雙曲線的一條漸近線為y=x,焦點(diǎn)A、B在x軸上,焦距|AB|為2
2

(1)求此雙曲線方程;
(2)過(guò)P(2,0)的直線L交雙曲線于點(diǎn)M、N,Q(
1
2
,0)
.求證:對(duì)于任意直線L,數(shù)量積
QM
QN
是定值,并求出該定值.
(3)在(2)的條件下,求|QM|2+|QN|2-|MN|2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知點(diǎn)B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn),…(n∈N*)順次為某直線l上的點(diǎn),點(diǎn)A1(x1,0),A2(x2,0),…,An(xn,0),…順次為x軸上的點(diǎn),其中x1=a(0<a≤1).對(duì)于任意的n∈N*,△AnBnAn+1是以Bn為頂點(diǎn)的等腰三角形.

(1)證明xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式.

(2)若l的方程為y=,試問(wèn)在△AnBnAn+1(n∈N*)中是否存在直角三角形?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

(文)已知函數(shù)f(x)=ax3x2+cx+d(a、c、d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.

(1)求a、c、d的值.

(2)若h(x)=x2-bx+,解不等式f′(x)+h(x)<0.

(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f′(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,請(qǐng)求出實(shí)數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案