【題目】已知圓,直線,.

(1)求證:對(duì),直線與圓總有兩個(gè)不同的交點(diǎn)

(2)是否存在實(shí)數(shù),使得圓上有四點(diǎn)到直線的距離為?若存在,求出的范圍;若不存在,說明理由;

(3)求弦的中點(diǎn)的軌跡方程,并說明其軌跡是什么曲線.

【答案】(1)見解析;(2);(3)見解析.

【解析】試題分析:(1)由圓心到直線的距離小于半徑可證得相交;

(2)利用圓心到直線的距離為,可求得;

(3)設(shè)中點(diǎn)為,利用,即可得解.

試題解析:

證明:(1)圓的圓心為,半徑為,

所以圓心到直線的距離.

所以直線與圓相交,即直線與圓總有兩個(gè)不同的交點(diǎn);

(2)假設(shè)存在直線,使得圓上有四點(diǎn)到直線的距離為,

由于圓心,半徑為,

則圓心到直線的距離為

化簡(jiǎn)得,解得.

(3)設(shè)中點(diǎn)為,

因?yàn)橹本恒過定點(diǎn)

當(dāng)直線的斜率存在時(shí),,又

,∴

化簡(jiǎn)得.

當(dāng)直線的斜率不存在時(shí),,

此時(shí)中點(diǎn)為,也滿足上述方程.

所以的軌跡方程是,

它是一個(gè)以為圓心,以為半徑的圓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=. ,直線x=0,x=e,y=0,y=1所圍成的區(qū)域?yàn)镸,曲線y=f(x)與直線y=1圍成的區(qū)域?yàn)镹,在區(qū)域M內(nèi)任取一個(gè)點(diǎn)P,則點(diǎn)P在區(qū)域N內(nèi)概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)z1 , z2是復(fù)數(shù),給出下列四個(gè)命題:
①若|z1﹣z2|=0,則 = ②若z1= ,則 =z2
③若|z1|=|z2|,則z1 =z2 ④若|z1|=|z2|,則z12=z22
其中真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1﹣an=2,a1=﹣5,則|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角的對(duì)邊分別為,且的面積,向量.

(Ⅰ)求大小;

(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P是長(zhǎng)軸長(zhǎng)為 的橢圓Q: 上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓的右頂點(diǎn),點(diǎn)M為線段PA的中點(diǎn),且直線PA與OM的斜率之積恒為
(1)求橢圓Q的方程;
(2)設(shè)過左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于C,D兩點(diǎn),線段CD的垂直平分線與x軸交于點(diǎn)G,點(diǎn)G橫坐標(biāo)的取值范圍是 ,求|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S3a4+4,a2,a6a18成等比數(shù)列

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( )
A. 的充分不必要條件
B.若命題 ,則
C.線性相關(guān)系數(shù) 的絕對(duì)值越接近1,表示兩變量的相關(guān)性越強(qiáng)
D.用頻率分布直方圖估計(jì)平均數(shù),可以用每個(gè)小矩形的高乘以底邊中點(diǎn)橫坐標(biāo)之和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)P( ,1),直線l的參數(shù)方程為 t為參數(shù))若以O(shè)為極點(diǎn),以O(shè)x為極軸,選擇相同的單位長(zhǎng)度建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ= cos(θ-
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求點(diǎn)P到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

同步練習(xí)冊(cè)答案