【題目】某個(gè)命題與正整數(shù)有關(guān),若當(dāng)n=k 時(shí)該命題成立,那么可推得當(dāng) n=k+1 時(shí)該命題也成立,現(xiàn)已知當(dāng) n=4 時(shí)該命題不成立,那么可推得( )
A.當(dāng) n=5 時(shí),該命題不成立
B.當(dāng) n=5 時(shí),該命題成立
C.當(dāng) n=3 時(shí),該命題成立
D.當(dāng) n=3 時(shí),該命題不成立

【答案】D
【解析】因?yàn)樵}與其逆否命題的真假性一致,所以可得若 時(shí)該命題不成立,則當(dāng) 時(shí)該命題也不成立,由此可得選D
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)學(xué)歸納法的步驟的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握

  1. :A.n=1(或時(shí)成立,推的基礎(chǔ);B.設(shè)n=k時(shí)成立; C.n=k+1時(shí)也成立,完成兩步,就可以斷定對(duì)任何自然數(shù)(n>=,)結(jié)論都成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)小明家訂了一份報(bào)紙,送報(bào)人可能在早上6:30﹣7:30之間把報(bào)紙送到小明家,小明父親離開(kāi)家去工作的時(shí)間在早上7:00﹣8:00之間,問(wèn)小明父親在離開(kāi)家前能得到報(bào)紙(稱(chēng)為事件A)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正四棱柱中,底面邊長(zhǎng),側(cè)棱 的長(zhǎng)為4,過(guò)點(diǎn)的垂線(xiàn)交側(cè)棱于點(diǎn),交于點(diǎn)

1)求證: 平面;

2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程;

(2)已知點(diǎn)的直角坐標(biāo)為,直線(xiàn)與曲線(xiàn)相交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3 , (n∈N)能被9整除”,要利用歸納法假設(shè)證nk+1時(shí)的情況,只需展開(kāi)( ).
A.(k+3)3
B.(k+2)3
C.(k+1)3
D.(k+1)3+(k+2)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函數(shù)在R上的解析式;
(Ⅲ)若對(duì)任意的t∈R,不等式f(t+1)+f(m﹣2t2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)正數(shù)a,b滿(mǎn)足a+b=1
(1)求證: ;
(2)若不等式 對(duì)任意正數(shù)a,b都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的奇函數(shù)的圖像是一條連續(xù)不斷的曲線(xiàn),當(dāng)時(shí),;當(dāng)時(shí),,且,則關(guān)于的不等式的解集為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在定義域單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)令, ,討論函數(shù)的單調(diào)區(qū)間;

3)如果在(1)的條件下, 內(nèi)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案