精英家教網 > 高中數學 > 題目詳情

【題目】(數學文卷·2017屆湖北省黃岡市高三上學期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經》中“物不知數”問題的解法傳至歐洲.1874年,英國數學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關于整除的問題,現有這樣一個整除問題:將2至2017這2016個數中能被3除余1且被5除余1的數按由小到大的順序排成一列,構成數列,則此數列的項數為__________

【答案】134

【解析】能被3除余1且被5除余1的數即為被15除余1得數,被15除余1得數構成以16為首項,15為公差的等差數列。由題意得 ,解得。所以此數列的項數為134.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2 , x∈R,則實數a= , b=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F為棱AD、AB的中點.
(Ⅰ)求證:EF∥平面CB1D1;
(Ⅱ)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2|x+1|+ax(x∈R).
(1)證明:當 a>2時,f(x)在 R上是增函數;
(2)若函數f(x)存在兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,則實數a的取值范圍是(
A.(﹣∞,﹣ ]
B.(0,1]
C.[﹣ ,1]
D.[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=1﹣ 是奇函數.
(1)求a的值;
(2)證明f(x)是R上的增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的連續(xù)函數g(x)滿足:①當x>0時,g′(x)>0恒成立(g′(x)為函數g(x)的導函數);②對任意的x∈R都有g(x)=g(﹣x),又函數f(x)滿足:對任意的x∈R,都有 成立.當 時,f(x)=x3﹣3x.若關于x的不等式g[f(x)]≤g(a2﹣a+2)對x∈[﹣ , ]恒成立,則a的取值范圍是(
A.a∈R
B.0≤a≤1
C.
D.a≤0或a≥1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點的坐標分別為,直線相交于點,且它們的斜率之積是,點的軌跡為曲線.

(Ⅰ)求的方程;

(Ⅱ)過點作直線交曲線兩點,交軸于點,若, ,證明: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直角梯形地塊ABCE,AF、EC是兩條道路,其中AF是以A為頂點、AE所在直線為對稱軸的拋物線的一部分,EC是線段.AB=2km,BC=6km,AE=BF=4km.計劃在兩條道路之間修建一個公園, 公園形狀為直角梯形QPRE(其中線段EQ和RP為兩條底邊).記QP=x(km),公園面積為S(km2).
(Ⅰ)以A為坐標原點,AE所在直線為x軸建立平面直角坐標系,求AF所在拋物線的標準方程;
(Ⅱ)求面積S(km2)關于x(km)的函數解析式;
(Ⅲ)求面積S(km2)的最大值.

查看答案和解析>>

同步練習冊答案