【題目】如圖,橢圓,拋物線,過上一點(diǎn)異于原點(diǎn)作的切線l交于A,B兩點(diǎn),切線l交x軸于點(diǎn)Q.
若點(diǎn)P的橫坐標(biāo)為1,且,求p的值.
求的面積的最大值,并求證當(dāng)面積取最大值時,對任意的,直線l均與一個定橢圓相切.
【答案】(1)6;(2),證明見解析.
【解析】
不妨設(shè)計算出AQ,BQ的長度代入條件計算出p值;
設(shè)則令,則l:表示出的面積,求出其最大值,驗證直線l與橢圓相切;
解:點(diǎn),由對稱性不妨設(shè).
于是,于是所以點(diǎn)Q是的左焦點(diǎn).
設(shè)焦準(zhǔn)距為.
類比拋物線的焦半徑算法可得.
于是,于是,所以.
設(shè)于是l:.
于是令,則l:.
聯(lián)立.
設(shè),.
.
當(dāng)且僅當(dāng)取等,且滿足所以的面積的最大值為.
注意到即為這個等式類似于;
于是猜想橢圓聯(lián)立
得:;
;
故當(dāng)面積取最大值時,直線l均與一個定橢圓相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動,且,若動點(diǎn)滿足.
(1)求出動點(diǎn)P的軌跡對應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正四棱錐可繞著任意旋轉(zhuǎn),平面.若,,則正四棱錐在面內(nèi)的投影面積的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,過點(diǎn)作的垂線,交的延長線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點(diǎn),為的中點(diǎn),且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過點(diǎn),斜率為1的直線與拋物線交于點(diǎn),,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于不同于的兩點(diǎn)、,若直線,分別交直線于兩點(diǎn),求取最小值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為 (為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于,兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一長為100碼,寬為80碼,球門寬為8碼的矩形足球運(yùn)動場地,如圖所示,其中是足球場地邊線所在的直線,球門處于所在直線的正中間位置,足球運(yùn)動員(將其看做點(diǎn))在運(yùn)動場上觀察球門的角稱為視角.
(1)當(dāng)運(yùn)動員帶球沿著邊線奔跑時,設(shè)到底線的距離為碼,試求當(dāng)為何值時最大;
(2)理論研究和實(shí)踐經(jīng)驗表明:張角越大,射門命中率就越大.現(xiàn)假定運(yùn)動員在球場都是沿著垂直于底線的方向向底線運(yùn)球,運(yùn)動到視角最大的位置即為最佳射門點(diǎn),以的中點(diǎn)為原點(diǎn)建立如圖所示的直角坐標(biāo)系,求在球場區(qū)域內(nèi)射門到球門的最佳射門點(diǎn)的軌跡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系的極坐標(biāo)方程為,直線l的參數(shù)方程為,(其中為參數(shù))直線l與交于A,B兩個不同的點(diǎn).
求傾斜角的取值范圍;
求線段AB中點(diǎn)P的軌跡的參數(shù)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com