函數(shù)f(x)=2x2+2x-3的零點個數(shù)為( 。
A、0B、1C、2D、無數(shù)
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將求函數(shù)f(x)的零點問題轉(zhuǎn)化為求兩個函數(shù)的交點問題,結(jié)合圖象一目了然.
解答: 解;令g(x)=2x2-3,h(x)=-2x;
函數(shù)g(x)和函數(shù)h(x)的交點個數(shù)就是函數(shù)f(x)的零點個數(shù),
畫出g(x),h(x)的圖象,
如圖示:
,
由圖象得:兩函數(shù)有兩個交點,
∴函數(shù)f(x)的零點有2個,
故選;C.
點評:本題考察了函數(shù)的零點問題,滲透了轉(zhuǎn)化思想,數(shù)形結(jié)合思想,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=
x
上的點與x軸上的點構(gòu)成等邊三角形OP1Q1,O1P2Q2,…Qn-1PnQn,…其中點Pn在拋物線上,點Qn的坐為(xn,0),猜測數(shù)列{xn}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足
1
an+1
-
1
an
=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為“調(diào)和數(shù)列”,已知正項數(shù)列{
1
bn
}為“調(diào)和數(shù)列”,且b1+b2+…+b11=110,則b5•b7的最大值是(  )
A、10B、100
C、110D、200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=
2
,b=1,A=45°,則B等于(  )
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程|x-2n|-k
x
=0(n∈N*)在區(qū)間[2n-1,2n+1]上有兩個不相等的實數(shù)根,則k的取值范圍是( 。
A、0<k≤
1
2n+1
B、0<k≤
1
2n+1
C、
1
2n+1
≤k≤
1
2n+1
D、0<k<
1
2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如下數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 t 70
若求出了y關(guān)于x的線性回歸方程為y=6.5x+17.5,則表中t為( 。
A、50B、55C、60D、65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為角A,B,C所對的邊,且b2+c2-a2=
3
bc,則A等于( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足an>0,n=1,2,…,a5•a2n-5=22n,(n≥3),則當(dāng)n≥1時,log2a1+log2a3+…+log2a2n+1=( 。
A、n(2n-1)
B、n2
C、(n+1)2
D、(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F2(3,0),離心率為e.
(Ⅰ)若e=
3
2
,求橢圓的方程;
(Ⅱ)設(shè)直線y=kx(k>0)與橢圓相交于A,B兩點,若
AF2
BF2
=0,求k2+
81
a4-18a2
的值.

查看答案和解析>>

同步練習(xí)冊答案