【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
【答案】(Ⅰ);(Ⅱ)
【解析】試題分析:(1)先由公式求出數(shù)列的通項(xiàng)公式;進(jìn)而列方程組求數(shù)列的首項(xiàng)與公差,得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用“錯位相減法”求數(shù)列的前項(xiàng)和.
試題解析:(1)由題意知當(dāng)時(shí), ,
當(dāng)時(shí), ,所以.
設(shè)數(shù)列的公差為,
由,即,可解得,
所以.
(2)由(1)知,又,得, ,兩式作差,得所以.
考點(diǎn) 1、待定系數(shù)法求等差數(shù)列的通項(xiàng)公式;2、利用“錯位相減法”求數(shù)列的前項(xiàng)和.
【易錯點(diǎn)晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項(xiàng)公式、利用“錯位相減法”求數(shù)列的前項(xiàng)和,屬于難題. “錯位相減法”求數(shù)列的前項(xiàng)和是重點(diǎn)也是難點(diǎn),利用“錯位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng) 的符號;③求和時(shí)注意項(xiàng)數(shù)別出錯;④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線與直線垂直.(注: 為自然對數(shù)的底數(shù))
(1)求的值;
(2)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(3)求證:當(dāng)時(shí), 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左,右焦點(diǎn),過作直線 (與軸不重合)交橢圓于, 兩點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察圖中各正方形圖案,每條邊上有an個圓點(diǎn),第an個圖案中圓點(diǎn)的個數(shù)是an,按此規(guī)律推斷出所有圓點(diǎn)總和Sn與n的關(guān)系式為( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, , , , 平面.
(1)求證: 平面;
(2)若為線段的中點(diǎn),且過三點(diǎn)的平面與線段交于點(diǎn),確定點(diǎn)的位置,說明理由;并求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)在區(qū)間[0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計(jì)算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S.先產(chǎn)生兩組(每組N個)0~1區(qū)間上的均勻隨機(jī)數(shù)x1,x2,…,xN和y1,y2,…,yN,由此得到N個點(diǎn)(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足yi≤f(xi)(i=1,2,…,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法可得S的近似值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點(diǎn)P(2,3),傾斜角為.
(Ⅰ)寫出直線l的參數(shù)方程和圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為.傾斜角為,且經(jīng)過定點(diǎn)的直線與曲線交于兩點(diǎn).
(Ⅰ)寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線的直角坐標(biāo)方程;
(Ⅱ)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com